⑴ 铂金催化剂用途是什么
1、硅氢加成反应
2、加成型室温硫化橡胶
3、加成型流体硫化硅橡胶
4、硅氢加成有两内种方式:容即马儿可尼可夫与反马儿可尼可夫,这两种方式得出两种产品
B 加成型硅橡胶:
在硅橡胶硫化过程中,乙烯基硅油和含氢硅油在铂均相催化剂的作用下,在室温或者高温(>100℃)下,含氢硅油中的氢原子,主要加到更多取代基(即氢原子少)的双键原子上。
⑵ 铂金催化剂是什么
广州大熙化工生产企业帮助解答:铂金催化剂主要以氯铂酸贵金属为主要原料活性组分的铂金催化剂。铂金催化剂为无色透明或淡黄色液状。用于液体胶、混炼胶(固体胶)硫化剂及聚氨酯涂料和有机硅硅胶涂料的同时催化固化的高效催化剂。
⑶ 发动机的基本结构
你好,发动机是由曲柄连杆机构和配气机构两大机构组成以及冷却,润滑,点火,燃料供给。启动系统等五大系统组成。主要配件有。气缸体,汽缸盖,活塞,活塞销,连杆,曲轴,飞轮等。
⑷ 关于防辐射眼镜的问题『高分』
我也正想配副呢,我不近视只想玩电脑看电视时戴。你近视吗?近视的话当然得一直戴着,不近视一直戴着没用还压迫鼻梁,玩电脑看电视戴就行了。价格怎么说呢,我们这便宜的几十贵的上百,不过400多的眼镜可以讲到200,唉!眼镜行业就是暴利,还有一定要去正规的眼镜店。 希望能帮到你,拜拜!
⑸ 甲烷能与氨气反应吗
氨气和甲烷的反应要在纯氧气、1050摄氏度、和铂金丝网作催化剂的条件下反应,反应式如下:
2CH4+2NH3+3O2 → (1050°C铂网)2HCN+6H2O
⑹ 英雄联盟 隐藏分是1470 S4黄金5 S5定位赛10连胜能到哪
黄金5-3之间
⑺ 发动机主要由几大机构,系统组成并简要说明各个组成的作用
机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,
发动机结构其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、汽缸套、气缸盖和气缸垫等零件组成。
气缸体
水冷发动机的气缸体和上曲轴箱常铸成一体,
发动机
称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。
气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。
1、一般式气缸体:其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差
2、龙门式气缸体:其特点是油底壳安装平面低于曲轴的旋转中心。
它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。
3、隧道式气缸体:这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。
为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。
曲轴箱
气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。
气缸盖
气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。
按照进气系统分类
它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。
缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。
气缸盖一般采用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被采用得越来越多。
气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。
汽油机燃烧室常见的三种形式。
1)半球形燃烧室
半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,
按照气缸数目分类
故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。
2)楔形燃烧室
楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,切诺基轿车发动机采用这种形式的燃烧室。
3)盆形燃烧室
盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机采用盆形燃烧室。
气缸垫
气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。
气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮——棉结构的气缸垫,由于铜皮——棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还采用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及橡胶粘结剂压成的气缸垫。
安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分2~3次进行,最后一次拧紧到规定的力矩。
OHV
发动机的凸轮轴布局形式分为OHC(顶置凸轮轴)和OHV(底置凸轮轴)这两种。目前日本及欧洲的汽车厂家较为青睐顶置凸轮轴这种设计;而底置凸轮轴,通常只有在美国车上才能看见。
OHC(顶置凸轮轴),历经发展现在被分成SOHC(单顶置凸轮轴)和DOHC(双顶置凸轮轴)。单顶置凸轮轴就是依靠一根凸轮轴来控制进、排气门的开合。通常来说单顶是配合两气门发动机的设计,由于两气门发动机在进、排气效率比多气门要低,气门间角布置局限性大。而双顶置凸轮轴就能把这些问题优化,因为一根凸轮轴只控制一组气门(进气门或排气门),因此省略了气门的摇臂,简化了凸轮轴到气门之间的传动机构。总的说来,双顶置凸轮轴由于传动部件少,进、排气效率高,更适合发动机高速时的动力表现。对于追求高功率的日本、欧洲厂商,凸轮轴顶置设计当然是最合适不过了。
底置凸轮轴这种设计的发动机一般都是大排量、低转速、追求大扭矩输出,因为底置凸轮轴,是依靠曲轴带动,然后凸轮与气门摇臂采用一根金属杆来连接,是凸轮顶起连杆,连杆推动摇臂来实现发动机气门的开合,所以过高的转速会使顶杆承压过大以致折断。但是这种用顶杆的设计,也有它的优点,结构简单,可靠性高、发动机重心底、成本低等。因为发动机转速低,强调的是扭矩表现,所以底置凸轮轴设计是足够满足这种需求的。
既然这两种设计偏向不同,前者是最求大功率,后者是追求大扭矩。我们知道汽车提速快、牵引力强靠的是扭矩,而实现最高速度是依靠功率。这里还有一个简单的公式:功率=转速X扭矩。自然吸气时发动机提升功率最简单的办法,就是提高转速,转速越高升功率自然就越高。
爆震传感器
发动机工作时因点火时间提前过度(点火提前角)、发动机的负荷、温度及燃料的质量等影响,会引起发动机爆震。发生爆震时,由于气体燃烧在活塞运动到上止点之前,轻者产生噪音及降低发动机的功率,重者会损坏发动机的机械部件。为了防止爆震的产生,爆震传感器是不可缺少的重要部件,以便通过电子控制系统去调整点火提前时间。
发动机发生爆震时,爆震传感器把发动机的机械振动转变为信号电压送至ECU。ECU根据其内部事先储存的点火及其他数据,及时计算修正点火提前角,去调整点火时间,防止爆震的发生。
铂金火花塞
火花塞分很多种,就材料而言主要有:镍合金、铂金等,这些材料本身都有良好的导电性。火化塞散热形式有冷型火花塞和热型火花塞,火花塞的电极结构主要有单极、双极、四极等。其中出于想提升车辆点火性能方面的考虑,很多人都会想着把自己的单极火花塞改为多极的,或者将自己的镍合金火花塞改为铂金的。
火花塞是由绝缘体和金属壳体两部分组成,金属壳体带有螺纹,拧在发动机气缸上,在金属壳体中有一个中心电极,它通过绝缘材料与金属壳体绝缘,在中心电极上端有接线螺母,连接从分电器的过来的高压线,在金属壳体下面还焊有接地电极,在中心电极与接地电极之间有很小的间隙,脉冲高压电击穿两个电极之间的空气,产生电火花点燃可然混合气做功,由于火花塞工作在高温高压的恶劣环境,对它的材料和制造工艺都要求十分高,但在大多经济型车常采用镍合金火花塞,只有中高档车才会使用铂金火花塞或白金火花塞。
顶置凸轮轴
凸轮轴英文全称为Overhead camshaft,简称OHC。一般发动机的凸轮轴安装位置有下置、中置、顶置三种形式。顶置凸轮轴是将凸轮轴被放置在汽缸盖内,燃烧室之上,直接驱动摇臂、气门,不必通过较长的推杆。与气门数相同的推杆式发动机(即顶置气门结构)相比,顶置凸轮轴结构中需要往复运动的部件要少得多,因此大大简化了配气结构,显著减轻了发动机重量,同时也提高了传动效率、降低了工作噪音。尽管顶置凸轮轴使发动机的结构更加复杂,但是它带来的更出色的引擎综合表现(特别是平顺性的显著提高)以及更紧凑的发动机结构,使发动机制造商很快在产品中广泛应用这一设计。顶置凸轮轴与顶置气门结构的驱动方式并不一定不同。动力可以通过正时皮带、链条甚至齿轮组传递到顶置的凸轮轴上。
分电器
汽油发动机点火系统中按气缸点火次序定时的将高压电流传至各气缸火花塞的部件。在蓄电池点火系统中,通常将分电器和点火器安装在同一轴上,并由凸轮轴驱动,同时它还带有点火提前角调整装置和电容器等。
点火器的断电臂用弹簧片使触点闭合,凸轮轴带动断电凸轮使触点开启,开启间隙约为0.30~0.45毫米。断电凸轮的凸起数与气缸数相同。当触点开启时,分电器的分电臂正好对准相应的侧电极,感应产生的高压电由次级线圈经过分电臂、侧电极、高压导线传至相应气缸的火花塞。
缸线
缸线是传统点火系中必不可少的一部分,是点火线圈把能量传给火花塞的介质。缸线大体上分为四部分。第一是导电材料,第二是绝缘胶皮,第三是点火线圈接头,第四是火花塞接头(还有一些缸线外面再包裹一层隔热材料,防止缸线被烧坏)。
缸线数目与发动机缸数相同。随着科技发展,现在很多车已经没有了缸线,缸线和点火线圈做到了一起,每缸一个点火线圈,体积大大减小,为每缸独立点火提供了更加便利的条件。
活塞
发动机好比是汽车的“心脏”,而活塞则可以理解为是发动机的“中枢”,除了身处恶劣的工作环境外,它还是发动机中最忙碌的一个,不断的进行着从下止点到上止点、从上止点到下止点的往复运动,吸气、压缩、做工、排气等,活塞的内部为掏空设计,更像是一个帽子,两端的圆孔连接活塞销,活塞销连接连杆小头,连杆大头则与曲轴相连,将活塞的往复运动转化为曲轴的圆周运动。
每个活塞的裙体处都有三条皱纹,是为了安装两道气环和一道油环,且气环在上。在装配时,两道气环的开口需要错开,起到密封的作用。油环的作用主要是刮除飞溅到缸壁上的多余润滑油,并将润滑油刮布均匀。目前广泛应用的活塞环材料主要有优质灰铸铁、球墨铸铁、合金铸铁等。
火花塞
通过电极之间的放电现象产生火花,汽油发动机是通过燃料和混合气体的适时燃烧使之产生动力,但是作为燃料的汽油即使处于高温环境下也很难自燃,要想使其适时燃烧有必要用“火”来点燃。这里说的火花点火便是“火花塞”的作用。发动机整体性能的好坏完全是取决于火花塞闪出火花的良否来决定的。我们往往把发动机比作为“汽车的心脏”,但是更能把火花塞比作为“发动机的心脏”。
机滤
机滤全称机油滤清器,它的作用是去除机油中的灰尘、金属颗粒、碳沉淀物和煤烟颗粒等杂质,保护发动机。
在发动机工作过程中,金属磨屑、尘土、高温下被氧化的积碳和胶状沉淀物、水等不断混入润滑油。机油滤清器的作用就是滤掉这些机械杂质和胶质,保待润滑油的清洁,延长其使用期限。机油滤清器应具有滤清能力强,流通阻力小,使用寿命长等性能。
机油冷却器
机油冷却器的作用是冷却润滑油,保持油温在正常工作范围之内。在大功率的强化发动机上,由于热负荷大,必须装用机油冷却器。发动机运转时,由于机油粘度随温度升高而变稀,降低了润滑能力。因此,有些发动机装用了机油冷却器,其作用是降低机油温度,保持润滑油一定的粘度。机油冷却器布置在润滑系循环油路。
节气门
节气门是控制空气进入发动机的一道可控阀门,气体进入进气管后会和汽油混合成可燃混合气,从而燃烧做工。它上接空气滤清器,下接发动机缸体,被称为是汽车发动机的咽喉。节气门有传统拉线式和电子节气门两种,传统发动机节气门操纵机构是通过拉索(软钢丝)或者拉杆,一端连接油门踏板,另一端连接节气门连动板而工作。电子节气门主要通过节气门位置传感器,来根据发动机所需能量,控制节气门的开启角度,从而调节进气量的大小。
节温器
节温器是根据冷却水温度的高低自动调节进入散热器的水量,改变水的循环范围,以调节冷却系的散热能力,保证发动机在合适的温度范围内工作。节温器必须保持良好的技术状态,否则会严重影响发动机的正常工作。如节温器主阀门开启过迟,就会引起发动机过热;主阀门开启过早,则使发动机预热时间延长,使发动机温度过低。
冷却系统
冷却系的主要功用是把受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。冷却系按照冷却介质不同可以分为风冷和水冷,如果把发动机中高温零件的热量直接散入大气而进行冷却的装置称为风冷系。
而把这些热量先传给冷却水,然后再散入大气而进行冷却的装置称为水冷系。由于水冷系冷却均匀,效果好,而且发动机运转噪音小,目前汽车发动机上广泛采用的是水冷系。
喷油嘴
喷油嘴其实就是个简单的电磁阀,当电磁线圈通电时,产生吸力,针阀被吸起,打开喷孔,燃油经针阀头部的轴针与喷孔之间的环形间隙高速喷出,形成雾状,利于燃烧充分。
喷油嘴本身是一个常闭阀,当ECU下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。 喷射供油的最大优点就是燃油供给之控制十分精确,让引擎在任何状态下都能有正确的空燃比,不仅让引擎保持运转顺畅,其废气也能合乎环保法规的规范。
平衡轴
平衡轴让发动机工作起来更加平稳、顺畅。平衡轴技术是一项结构简单并且非常实用发动机技术,它可以有效减缓整车振动,提高驾驶的舒适性。
当发动机处在工作状态时,活塞的运动速度非常快,而且速度很不均匀。当活塞位于上下止点位置时,其速度为零,但在上下止点中间位置的速度则达到最高。由于活塞在气缸内做反复的高速直线运动,因此必然会在活塞、活塞销和连杆上产生较大的惯性力。虽然连杆上的配重可以有效地平衡这些惯性力,但却只有一部分运动质量参与直线运动,另一部分参与了旋转。因而除了上下止点位置外,其它惯性力并不能完全达到平衡状态,此时的发动机便产生了振动。
起动系统
为了使静止的发动机进入工作状态,必须先用外力转动发动机曲轴,使活塞开始上下运动,气缸内吸入可燃混合气,然后依次进入后续的工作循环。而依靠的这个外力系统就是启动系统。
目前几乎所有的汽车发动机都采用电力起动机启动。当电动机轴上的驱动齿轮与发动机飞轮周缘上的环齿啮合时,电动机旋转时产生的电磁转矩通过飞轮传递给发动机的曲轴,使发动机起动。电力起动机简称起动机。它以蓄电池为电源,结构简单、操作方便、起动迅速可靠。
气门
气门(Value)的作用是专门负责向发动机内输入燃料并排出废气,传统发动机每个汽缸只有一个进气门和一个排气门,这种设计结构相对简单,成本较低,维修方便,低速性能较好,缺点是功率很难提高,尤其是高转速时充气效率低、性能较弱。为了提高进排气效率,现在多采用多气门技术,常见的是每个汽缸布置有4个气门(也有单缸3或5个气门的设计,原理一样,如奥迪A6的发动机),4汽缸一共就是16个气门,在汽车资料上经常看到的“16V”就表示发动机共16个气门。这种多气门结构容易形成紧凑型燃烧室,喷油器布置在中央,这样可以令油气混合气燃烧更迅速、更均匀,各气门的重量和开度适当地减小,使气门开启或闭合的速度更快。
曲柄连杆机构
曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。曲柄连杆机构的主要零件可以分为三组,机体组、活塞连杆组和曲轴飞轮组。
发动机共有进气、压缩、做功、排气四个行程,在做功行程中,曲柄连杆机构将活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,由于惯性作用又把曲轴的旋转运动转变成活塞的往复直线运动。总的来说曲柄连杆机构是发动机借以产生并传递动力的机构。通过它把燃料燃烧后发出的热能转变为机械能。
曲轴
曲轴是发动机的主要旋转机构,二行程发动机的工作原它担负着将活塞的上下往复运动转变为自身的圆周运动,且通常我们所说的发动机转速就是曲轴的转速。
曲轴会因机油不清洁以及轴颈的受力不均匀造成连杆大头与轴颈接触面的磨损,若机油中有颗粒较大的坚硬杂质,也存在划伤轴颈表面的危险。如果磨损严重,很可能会影响活塞上下运动的冲程长短,降低燃烧效率,自然也会较小动力输出。此外曲轴还可能因为润滑不足或机油过稀,造成轴颈表面的烧伤,严重情况下会影响活塞的往复运动。因此一定要用合适黏度的润滑油,且要保证机油的清洁度。
润滑系统
发动机工作时,各运动零件均以一定的力作用在另一个零件上,发动机并且发生高速的相对运动,有了相对运动,零件表面必然要产生摩擦,加速磨损。因此,为了减轻磨损,减小摩擦阻力,延长使用寿命,发动机上都必须有润滑系统。
润滑系统的功用就是在发动机工作时连续不断地把数量足够、温度适当的洁净机油输送到全部传动件的摩擦表面,并在摩擦表面之间形成油膜,实现液体摩擦,从而减小摩擦阻力、降低功率消耗、减轻机件磨损,以达到提高发动机工作可靠性和耐久性的目的。润滑方式有压力润滑、飞溅润滑、润滑脂润滑三种方式。
中冷器
中冷器一般只有在安装了涡轮增压的车才能看到。因为中冷器实际上是涡轮增压的配套件,其作用在于提高发动机的换气效率。 对于增压发动机来说,中冷器是增压系统的重要组成部件。无论是机械增压发动机还是涡轮增压发动机,都需要在增压器与发动机进气歧管之间安装中冷器,由于这个散热器位于发动机和增压器之间,所以又称作中间冷却器,简称中冷器。