A. 感应圈电火花
当火花在感应圈两个金属球间跳动时,必定建立一个快速变化的电磁场.这种变化的电磁场以电磁波的形式在空间快速传播,当电磁波经过导线环时,迅速变化的电磁场在导线环中激发出感应电动势,使得导线环的两个小球间也产生了火花.在赫兹实验中,感应圈成了电磁波发射器,导线环成了电磁波的检测器.
B. 赫兹的故事
赫兹的故事
德国物理学家H·赫兹(1857~1894年),虽然只活了短短37年,却作出了两大发现:一是在实验上证实了麦克斯韦预言的电磁波;二是发现了光电效应。
19世纪70年代,当赫兹开始科学活动时,人们对电磁现象的认识,还处于莫衷一是的状态。麦克斯韦的电磁理论刚刚提出,由于这个理论用到了比较高深和新颖的数学工具,并且由于牛顿力学的概念已经深入人心,以及宏观力学现象的直观性,它并没有被普遍接受,许多物理学家仍然局限在机械论的框框内,企图依照力学理论的框架来建立电磁理论。麦克斯韦理论的关键是位移电流和电磁波。理论上预言了电磁波的存在,又提出光是电磁波的一种。电磁波应该有很宽的频率范围,光波的频率范围只占其中的一小段。要证明麦克斯韦理论的正确,就必须用实验证明别的频率的电磁波的存在,它也以光速传播,并且也和光波一样,具有反射、折射、衍射、干涉、偏振等性质。因此,1879年,柏林普鲁士科学院悬赏征求对电磁波的实验验证。
赫兹是亥姆霍兹的学生,亥姆霍兹很赏识他,师生间一生都保持着亲密的友谊。亥姆霍兹把当时的电磁学领域称?quot;无路的荒原",为自己定下了对这个领域进行全面研究的任务,企图理清这种混乱状态;事实上,柏林科学院的悬赏征答题就是亥姆霍兹拟订的。受其影响,赫兹深入研究了电磁理论。他决心进行科学院悬赏征答的实验。不过由于其它工作,这件事一搁就是几年。
赫兹确证电磁波存在的实验是在1887~1888年完成的。他所用的电磁波发生器和检测器。左边是发生器,由两个距离很近的小铜球各自通过长30 cm的铜棒与一个大铜球连接而成。两个大铜球相当于电容器的两块极板,它们之间有电容,铜棒有电感。把感应圈的输出接到两个小铜球上,对电容充电。到一定电压时,两个小铜球之间产生火花短路,发生器就成为一个LC回路,电容上的电荷通过火花放电,产生频率很高(因为回路的电感、电容很小)的振荡。由于电容器的形状,电场弥漫在整个空间,产生向外传播的电磁波。右边是检测器,由一根铜线弯成圆形(赫兹采用的半径是35 cm),两端焊接两个铜球而成,二球之间的距离可以调节。它也是一个振荡回路,两球间的电容就是回路的电容,回路的固有频率由其电感和电容决定。为了检测时效果显著,把检测器调到与发生器谐振。这样,当电磁波到达时,检测器的圆形铜线上感生出电动势,回路内产生强迫振荡,由于谐振,检测器内回路产生强烈的振荡,这时,火花隙中会出现火花,就可检验电磁波的存在。 赫兹还通过把检测器移到不同的位置,测出电磁波的波长为66 cm,这是光波波长的106倍。根据波长和计算出的振荡频率,可算出波速等于光速。
后来赫兹还实现了波的反射,验证了反射定律;并使原始波与反射波叠加产生了驻波,从而确证发生了干涉。赫兹还让电磁波通过沥青棱柱发生折射;通过带孔的屏蔽观察到衍射;通过平行的导线栅网产生偏振;还用柱面金属屏使电磁波聚焦。这些实验结果表明电磁波的性质与光波相同。这样,赫兹就从实验上证明了麦克斯韦理论的正确,电磁理论开始被众多科学家所接受。到19世纪末,麦克斯韦理论在电磁学中已占统治地位。
赫兹在电磁波实验中还顺便发现了光电效应。1887年,他发现当检测器振子的两极受到发射振子的火花光线照射时,检测器的火花会有所加强。进一步的研究表明这是由于紫外线的照射,紫外线会从负电极上打出带负电的粒子。他将此事写成论文发表,但没有进一步研究。
1894年,赫兹死于牙病引起的血毒症,去世时还不到37岁。为了纪念赫兹,他的名字被用作频率单位的名称。
赫兹不但是一个优秀的实验物理学家,而且有很好的理论素养。他于1884年在电磁理论中引进了矢量势A,并且于1890年把麦克斯韦方程组从其原来的形式(共8个方程,其中6个矢量方程)改写为简化的对称形式,只包括四个矢量方程,沿用至今。他的体系严整明快,加速了麦克斯韦理论的流传。他还写了一本《力学原理(用新形式表述)》,在他身后出版,这本书不仅对前人的成果进行了再表述,还包括了他自己的某些新思想。
虽然赫兹青年时代学过工程,做电磁波实验时又是在工科大学任教授,但他追求的是对自然基本法则的理解,对电磁波的实际应用并不关心。发现电磁波后,他转而深入研究麦克斯韦理论和力学基本原理。加以他英年早逝,因此赫兹本人并没有考虑过用电磁波传递信息的可能性。但是,缺口已经打开,条件已经成熟,赫兹已经替马可尼、波波夫等搭好了舞台,无线电的发明乃是历史的必然。许多人投身于电磁波应用的研究,在赫兹去世后一两年内就拿出了具体成果,并且一发而不可收,无线电电子学在整个20世纪内高速发展,造就了今天的信息时代。
C. 144赫兹显示器有办法造假吗
144刷新率显示器造不了假的,因为普通刷新率和144刷新率玩游戏一试就知道,只需要在设备管理器和显卡控制面板看到有没有144刷新率的字,再去玩游戏就感受到,不过400多块是不可能买到144刷新率显示器的,最低需要HDMI接口才能达到144刷新率,DP接口也可以,其它的接口不行,
D. 高频加热为多少HZ加热深度如何调整
感应加热设备的电源频率有四个级别:
1、 500Hz以下称为低频电源
2、1-10KHZ范围内称为中频感应加热电源,中频感应加热深度为3-6mm
3、15-50KHz范围内称为超音频感应加热电源,超音频感应加热深度为1.5-4mm
4、30-100KHz范围内称为高频感应加热电源,高频感应加热深度为0.2-2mm
E. 淬火、高频淬火、φ25mm的轴端面淬火怎么制作感应圈请提供图、线径。好追加!~
高频功率足够大,做成圆形就行,长方形也行。随意,线圈中间不需要加东西。可以参考热处理手册,有这方面介绍
F. 赫兹是如何证明了电磁波的存在
赫兹在物理学上最主要的成就是用实验成功地证明了电磁波的存在,并且完善了麦克斯韦的电磁场理论。1886年10月,赫兹在卡尔斯鲁高等工业学院的物理实验室用放电线圈做火花放电实验,偶然发现和放电线圈靠得很近的另一个开口的绝缘线圈中有电火花跳过。赫兹十分敏感,立即想起七年前未完成的物理竞赛题目,那是亥姆霍兹提出的一个用实验检验麦克斯韦理论正确性的难题。他向自己提出了一个新的任务:用实验检验是否存在麦克斯韦所预言的电磁波。从1886年10月25日起,赫兹开始有计划地进行实验。12月2日,他在感应圈的两根电极上各接一根0.305米长的铜棒,每根铜棒的一头接边长0.407米的正方形锌板。另一头接黄铜小球,两个黄铜小球互相对着,组成发生器。另外,赫兹用一根硬质铜导线弯成圆弧形,两端各接一个可以调节距离的黄铜小球,组成检波器。发生器和检波器相距10米。发生器通电后,赫兹在检波器的两个铜球间隙看到了电火花,实验成功了!这时候,赫兹的心激动得像电火花一样在欢快地跳跃。因为他的实验证明,发生器确实发出了电磁波,并且被检波器接收到了。
G. 赫兹是谁
赫兹(Heinrich Rudolf Hertz,1857~1894)是德国著名的物理学家,1857年2月22日诞生于德国汉堡的一个律师家庭。
赫兹从小受到父亲广博知识的熏陶,还喜欢动手制作木工,也喜欢画图。在中学上学的时候,他就一心想当工程师。1875年中学毕业后,在莱茵河畔的法兰克福设计局工作了一年,1876年春天去德累斯顿高等技术学院学工程学,秋天应召去柏林的铁道兵团服役。1877年退役,进慕尼黑工业学院学工程学,1878年转入柏林大学。在亥姆霍兹和基尔霍尔(1824~1887)名下学习。不久,亥姆霍兹发现了赫兹的才能,收他到自己的实验室当见习生。1879年赫兹在物理竞赛中成绩出众,荣获金质奖章;年底他完成了博士论文《论旋转体中的感应》,第二年获博士学位,当了亥姆霍兹的助手。1883年任基尔大学理论物理学副教授。1885年任卡尔斯鲁高等工业学院物理学教授。1889年接替克劳修斯任波恩大学理论物理学教授,同年当选为柏林科学院通讯院士。1890年被选为俄国莫斯科协会名誉会员。
赫兹在物理学上最主要的成就是用实验成功地证明了电磁波的存在,并且完善了麦克斯韦的电磁场理论。
1886年10月,赫兹在卡尔斯鲁高等工业学院的物理实验室用放电线圈做火花放电实验,偶然发现和放电线圈靠得很近的另一个开口的绝缘线圈中有电火花跳过。赫兹十分敏感,立即想起七年前未完成的物理竞赛题目,那是亥姆霍兹提出的一个用实验检验麦克斯韦理论正确性的难题。他向自己提出了一个新的任务:用实验检验是否存在麦克斯韦所预言的电磁波。从1886年10月25日起,赫兹开始有计划地进行实验。12月2日,他在感应圈的两根电极上各接一根0.305米长的铜棒,每根铜棒的一头接边长0.407米的正方形锌板。另一头接黄铜小球,两个黄铜小球互相对着,组成发生器。另外,赫兹用一根硬质铜导线弯成圆弧形,两端各接一个可以调节距离的黄铜小球,组成检波器。发生器和检波器相距10米。发生器通电后,赫兹在检波器的两个铜球间隙看到了电火花,实验成功了!这时候,赫兹的心激动得像电火花一样在欢快地跳跃。因为他的实验证明,发生器确实发出了电磁波,并且被检波器接收到了。
接着,赫兹测量了电磁波在真空中传播的速度,但是他计算到的数值是20万千米/秒,和麦克斯韦预言的不一致。因此,赫兹又花了好几个月的工夫,作了一系列检验性实验。检查实验结果是否可靠。其实实验毫无问题,是赫兹计算错了。后来物理学家本凯莱用赫兹的实验数据重新计算,得到电磁波速度是30万千米/秒。1887年11月5日,赫兹满怀信心地给亥姆霍兹寄去一篇题为《论在绝缘体中电过程引起的感应现象》的论文,阐明实验证明了法拉第和麦克斯韦定论的正确性。亥姆霍兹看后十分高兴,当即用明信片告知赫兹:“手稿已收到。好!星期四我就把手稿交付排印。”赫兹的论文一发表,顿时成了科学界轰动的人物。赫兹实验庄严地宣告:人类利用电磁波的春天来到了!
后来,赫兹又做了一系列的实验。他研究了紫外光对火花放电的影响,首先发现了光电效应,也就是物质在光的照射下释放出电子的现象。这一发现,成了爱因斯坦建立光量子理论的实验基础。赫兹还通过实验确认电磁波是横波,具有直线传播、反射、折射和偏振等光学性质,并且实现了两列电磁波的干涉,从而全面验证了麦克斯韦光的电磁理论的正确性。1890年以后,赫兹花了比较多的时间和精力,整理了麦克斯韦的理论,进一步完善了麦克斯韦方程组,使它更加完美、对称,给出了麦克斯韦方程组的现代形式。
赫兹对人类文明作了很大的贡献,正当人们期望他再作贡献的时候,骨癌过早地夺去了他的生命。赫兹于1894年元旦去世,只活了37岁。他的导师亥姆霍兹赞扬赫兹“才气横溢,性格坚毅,用自己极短暂的一生解决了一个世纪以来许多科学家所没有解决的一系列重要的问题”。1896年3月24日,俄国著名物理学家波波夫(1859~1906)用“海因里希·鲁道夫·赫兹”这一串字母,拍发了世界上第一份电报。后人为纪念赫兹,用他的名字来命名频率的单位,简称“赫”。
H. 07上海大众polo曲轴位置传感器感应圈位置怎么安装图片
你可以到网络文库去搜索一下这款车的维修资料,上面就有对安装的说明。
I. 特斯拉线圈原理图
特斯拉线圈
特斯拉线圈又叫泰斯拉线圈,因为这是从"Tesla"这个英文名直接音译过来的。这是一种分布参数高频共振变压器,可以获得上百万伏的高频电压。特斯拉线圈的原理是使用变压器使普通电压升压,然后经由两极线圈,从放电终端放电的设备。通俗一点说,它是一个人工闪电制造器。 在世界各地都有特斯拉线圈的爱好者,他们做出了各种各样的设备,制造出了眩目的人工闪电。
在今年的年初,曾经发过一篇介绍特斯拉线圈的文章:近距离接触“死亡之手” 家中制造的人工闪电,其中大概介绍了特斯拉线圈的大概组成部分和原理。(了解即可,建议不要模仿,因为太太太…危险,小型的特斯拉线圈都能轻易达到上万伏电压)
19世纪90年代,爱迪生光谱辐射能研究项目的一名助手尼古拉・特斯拉就申请了最初的一个专利。 其中的一个线圈连接在电源上传输能量作为发射器,另一个线圈连着灯泡,作为能量接收器。通电后,发射器能够以10兆赫兹的频率振动,但它并不向外发射电磁波。
特斯拉后来发明了所谓的“放大发射机”,现在称之为大功率高频传输线共振变压器,用于无线输电试验。特斯拉的无线输电技术,值得一提。特斯拉把地球作为内导体,地球电离层作为外导体,通过他的放大发射机,使用这种放大发射机特有的径向电磁波振荡模式,在地球与电离层之间建立传统特斯拉线圈原理图起大约8赫兹的低频共振,利用环绕地球的表面电磁波来传输能量。这一系统与现代无线电广播的能量发射机制不同,而与交流电力网中的交流发电机与输电线的关系类似,当没有电力接收端的时候,发射机只与天地谐振腔交换无功能量,整个系统只有很少的有功损耗,而如果是一般的无线电广播,发射的能量则全部在空间中损耗掉了。特斯拉有生之年没有财力实现这一主张。后人从理论上完全证实了这种方案的可行性,证明这种方案不仅可行,而且效率极高,对生态安全,并且不会干扰无线电通信。只不过涉及到世界范围内的能量广播和免费获取,在现有的政治和经济体制下,无人实际问津这种主张。
为了打破爱迪生的技术垄断,特斯拉特地制作了一个“特斯拉线圈”,它是由一个感应圈、变压器、打火器、两个大电容器和一个初级线圈仅几圈的互感器组成。放电时,未打火时能量由变压器传递到电容阵,当电容阵充电完毕时两极电压达到击穿打火器中的缝隙的电压时,打火器打火,此时电容阵与主线圈形成回路,完成L/C振荡进而将能量传递到次极线圈.这种装置可以产生频率很高的高压电流,不过这种高压电的电流极小,对人体不会产生显著的生理效应。
特斯拉线圈的线路和原理都非常简单,但要将它调整到与环境完美的共振很不容易,特斯拉就是特别擅长这项技艺的人。
信不信由你,特斯拉线圈不只能够保护你的笔记本电脑、弹奏美妙的乐曲,还可以让一群人一起欢呼,一同流口水唷!
这场在加州圣马刁 Maker Faire 2008 会场内的表演,炫丽的闪光不仅让旁观的观众惊呼连连,而在嘶嘶作响的闪光声中,隐约还能听到啧啧的口水声。不过这可不是观众被闪电电到脸部抽筋所以乱喷口水,而是由于在这两座线圈中挂有成打的热狗,当闪电刷过的时候,阵阵的香味也就跟着飘了出来。
虽然我们并不清楚这样烤出来的热狗尝起来如何,不过能搞这么大的阵仗感觉很酷就是了( 谁不想吃看看用激光塔煮熟的热狗哩! )。