当前位置:首页 » 黄金回收 » 疯传杠杆原理
扩展阅读
类似于金条 2021-03-31 20:26:33
何兰黄金市厂 2021-03-31 20:26:32
蒲币对人民币汇率 2021-03-31 20:26:27

疯传杠杆原理

发布时间: 2021-03-22 02:55:46

『壹』 用简单的话解释一下杠杆原理,最好有图解。。

杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件专”。要使杠杆平属衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1·
L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。

『贰』 什么是杠杆原理

古希腊科学家阿基米德有这样一句流传千古的名言:“假如给我一个支点,我就能把地球挪动!”这句话有着严格的科学根据.
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。这些公理是:(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的桅般顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。

『叁』 请给我讲解杠杆原理

杠杆原理
杠杆是一种简单机械;一根结实的棍子(最好不会弯又非常轻),就能当作一根杠杆了。上图中,方形代表重物、圆形代表支持点、箭头代表用力点,这样,你看出来了吧?(图1)中,在杠杆右边向下用力,就可以把左方的重物抬起来了;在(图2)中,在杠杆右边向上用力,也能把重物抬起来;在(图3)中,支点在左边、重物在右边,力点在中间,向上用力,也能把重物抬起来。
你注意到了吗?在(图1)中,支点在杠杆中间,物理学里,把这类杠杆叫做第一种杠杆;(图2)是重点在中间,叫做第二种杠杆;(图3)是力点在中间,叫做第三种杠杆。
第一种杠杆例如:剪刀、钉鎚、拔钉器……这种杠杆可能省力可能费力,也可能既不省力也不费力。这要看力点和支点的距离(图1):力点离支点愈远则愈省力,愈近就愈费力;如果重点、力点距离支点一样远,就不省力也不费力,只是改变了用力的方向。
第二种杠杆例如:开瓶器、榨汁器、胡桃钳……这种杠杆的力点一定比重点距离支点远,所以永远是省力的。
第三种杠杆例如:镊子、烤肉夹子、筷子……
这种杠杆的力点一定比重点距离支点近,所以永远是费力的。
如果我们分别用花剪(刀刃比较短)和洋裁剪刀(刀刃比较长)来剪纸板,花剪较省力但是费时;而洋裁剪则费力但是省时。

『肆』 杠杆原理是什么

杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• l1=F2•l2。F1动力,l1动力臂,F2阻力,l2阻力臂。

『伍』 杠杆的原理是什么

原理简介
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂或反比。动力×动力臂=阻力×阻力臂,用代数式表示为F•
L1=W•L2。式中,F表示动力,L1表示动力臂,W表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
概念分析
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如欲省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。

杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:支点到受力点距离(力矩)
*
受力
=
只点到施力点距离(力臂)
*
施力,这样就是一个杠杆。
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆
(力臂
>
力矩);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机
(力矩
>
力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,我就能把地球挪动!"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。

『陆』 杠杆原理是什么

一、杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(动力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
二、
运用几何学通过严密的逻辑论证,得出了杠杆原理,这些公理是:
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布。

『柒』 杠杆的原理是什么

杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力回(用力点、支点和阻答力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一

『捌』 杠杆原理

物理学中把在力的作用下可以围绕固定点转动的坚硬物体叫做杠杆。
五要素:动力,阻力,动力臂,阻力臂和支点
1、支点:杠杆的固定点,通常用O表示。
2、动力:驱使杠杆转动的力,用F1表示。
3、阻力:阻碍杠杆转动的力,用F2表示。
4、动力臂:支点到动力作用线的垂直距离叫动力臂,用L1表示。
5、阻力臂:支点到阻力作用线的垂直距离叫阻力臂,用L2表示。
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。

『玖』 杠杆的工作原理

杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。