当前位置:首页 » 黄金回收 » 燃料电池回收
扩展阅读
类似于金条 2021-03-31 20:26:33
何兰黄金市厂 2021-03-31 20:26:32
蒲币对人民币汇率 2021-03-31 20:26:27

燃料电池回收

发布时间: 2021-03-21 08:46:05

㈠ 燃料电池使用后的化学物质如何处理 是否有害

很多燃料电池的电解质是强酸强碱,电池反应基本都可逆,当然必须回收利用
废旧电池是指燃料电池吗?貌似很少有讨论废旧燃料电池的问题..直接把电解质移出就可以了吧

㈡ 燃料电池会污染环境吗

废电池的其主要成分为锰、汞、锌、铬等重金属,废电池无论埋在大气中还是深埋在地下,其重金属成分都会随渗液溢出,造成地下水和土壤的污染,日积月累,会严重危害人类健康。一个小电池可以造成这么大的危险,可以跟原子弹去媲美了。
废旧电池的危害主要集中在其中所含的少量的重金属上,如铅、汞、镉等。这些有毒物质通过各种途径进入人体内,长期积蓄难以排除,损害神经系统、造血功能和骨骼,甚至可以致癌。铅:神经系统(神经衰弱、手足麻木)、消化系统(消化不良、腹部绞痛)、血液中毒和其他的病变。汞:精神状态改变是汞中毒的一大症状。脉搏加快,肌肉颤动,口腔和消化系统病变。镉、锰:主要危害神经系统。三、废旧电池污染环境的途径:这些电池的组成物质在使用过程中,被封存在电池壳内部,并不会对环境造成影响。但经过长期机械磨损和腐蚀,使得内部的重金属和酸碱等泄露出来,进入土壤或水源,就会通过各种途径进入人的食物链。过程简述如下:池土壤微生物动物循环粉尘农作物食物人体神经沉积发病。
废电池对人类可以产生那么大的影响,其威力可以比的上毒品了
电池主要有一次性电池、二次电池和汽车电池。一次性电池数量最大,一次用完就丢,就算威力币二次电池和汽车电池的威力小,但积少成多,一群小孩可以打死一个大人嘛。一次性电池包括纽扣电池、普通锌锰干电池和碱电池,一次性电池多含汞。二次电池主要指充电电池,其中含有重金属镉。汽车废电池中含有酸和重金属铅。我本人是提议用充电电池,没点了可以在充,循环利用,一个可以顶一次性电池10个。
电池虽有很大的危害,但是办法总是有的,可以回收呀。
家用电器的普及和种类的增加,使得电池的使用量随之剧增。废电池混在垃圾中,不仅污染环境,而且也是浪费。全国电池年消耗量为30亿只,因无回收而丢失铜740吨、锌1.6万吨、锰粉9.7万吨。我们应该把废旧电池与其它垃圾分开,集中起来送去回收。许多国家都很重视废电池的回收。德国的很多商店要求顾客在购买电池时,同时要把废旧电池交回给商店;日本专有分类箱收集不同的废电池。日本人口那么少,都会去回收电池,可见他们是多么重视电池的影响,那么拥有13亿人的中国的那更是应该在这个方面做好措施。
电池是工农业生产和人民生活中使用得最广泛的商品之一,据统计,目前全世界的电池 产量正以每年20%的速度增长,随着电池生产量和使用量的与日俱增,废电池引起的环境题也越来越严重。我国是电池生产和消费大国,1998年电池的产量和消费量高达140亿只,占世界总量的 1/3。目前我国每年废弃的上百亿只电池大部分都没有进行回收处理,而是随意丢弃,对环 境构成了严重的威胁。国家现在已开始重视这个问题,正在制定有关废电池回收处理的法规 和政策,相信不远的将来,废电池“一扔了之”的局面将会改变。
通过我的仔细查阅和思考其实电池的问题很容易解决,办法大家也知道:1、用可循环电池2、不要乱扔废旧电池,应该拿去回收3、不要浪费电,一天就用几箱电池的那些就太缺心眼。用电池不是你有钱就可以乱用,后果不是钱不钱的问题,而是环境的问题,你现在享受一生,换来的是你的子孙一世生活在一个寸草不生,温度极高的地狱里。你只要花多一点时间把废电池扔进可回收的垃圾桶了,就可以造福你的后代。
美国进口普卫欣天 猫有效防雾霾出门做好防护

㈢ 急急急。。。。燃料电池对环境的影响是什么

燃料电池中最常考的是氢氧燃料电池,其中的填充液又分为酸性和碱性两种。其他的还有用有机物的燃烧为基本原理的燃料电池,比如甲醇的燃烧反应,甲醇在负极失电子,氧气在正极得电子。燃料电池的最大好处是反应生成的物质多为水和二氧化碳,符合绿色化学的基本原则,对环境污染小,基本上无污染。相比之下,其他电池,比如铅蓄电池,在使用后回收时,其中的铅是重金属,会对环境有污染,相比之下还是燃料电池比较环保。

㈣ 除了氢燃料电池外,还有其他可再生的燃料电池么

1:利用天然气的发电系统 MCFC需要供给的燃料气体是H2,它可由天然气中的CH4改质生成,其反应在改质器中进行。改质器出口的温度为600℃,符合MCFC的工作温度,可以原样直接输送到燃料极侧。 另一方面,空气极侧需要的O2通过空气压缩机供给。另一个反应因素CO2,空气极侧反应等量地再利用发电时燃料极产生的CO2。除了有CO2外,燃料极排出气体还含有未反应的可燃成份,一起输送到改质器的燃烧器侧,天然气改质所必需的热量就由该燃烧热供给。这种情况下,排出的燃料气体会含有过多的H2O,将影响发热量,为此通常是先将排出燃料气体冷却,将水份滤去后再输送到改质器的燃烧侧。从改质器燃烧侧出来的气体与来自压缩机的空气相混合后供给空气极侧。 实际的电池因内部存在电阻会发热,故通过在空气极侧中流过的大量氧化气体(阴极气体,即含有O2、CO2的气体)来除去其发生的热。通常是按600℃供给的气体在700℃下排出,这一指标可通过在空气极侧进行流量调整来控制,为此采用阴极气体的再循环,即,空气极侧供给的气体为以改质器燃烧排气与部分空气极侧排出气体的混合体,为了保持电池入口和出口的温度为最佳温度,可将再循环流量与外部供给的空气流量一起调整。 来自空气极侧的排气为高温,送入最终的膨胀式透平,进行动力回收,作为空气压缩动力而应用。剩余的动力,由发电机发电回收,从而可以提高整套系统的效率。另外,天然气改质所必需的H2O(水蒸汽)可从排出的燃料气体中回收的H2O来供给。 这种系统的效率可达55~60%。在整套出力中MCFC发电量份额占90%。绝大部分的发电量是由MCFC生产的。如果考虑到排气形成的动力回收和若干的附加发电,广义上也可以称为联合发电。 在使用PAFC的情况下,若以煤炭为燃料发电时就不容易了,采用天然气时,其构成类似于MCFC机组,基本上是由电池本体发电。原因是PAFC排出气体温度较低,与其进行附加发电不如作为热电联产电源。 SOFC能和较高温度的排气体构成附加发电系统,由于SOFC不需要CO2的再循环等,结构简单,其发电效率可以达到50-60%。 2:利用煤炭的发电系统 燃料电池 以MCFC为例进行介绍。煤炭需经煤气化装置生成作为MCFC可用燃料的CO及H2,并在进入MCFC前除去其中含有的杂质(微量的杂质就会构成对MCFC的恶劣影响),这种供给MCFC精制煤气,其压力通常高于MCFC的工作压力,在进入MCFC供气前先经膨胀式涡轮机回收其动力。涡轮机出口气体,经与部分来自燃料极(阳极)排出的高温气体(约700℃)相混合,调整为对电池的适宜温度(约600℃)。该阳极气体的再循环是,将排出的燃料气体中所含的未反应的燃料成分返回入口加以再利用,借以达到提高燃料的利用率。向空气极侧供给O2和CO2是通过空气压缩机输出的空气和排出燃料气体相混合来完成的。但是,碳酸气是采用触媒燃烧器将未燃的H2及CO变换成H2O和CO2后供给的。 实际的燃料电池,内部电阻会发热,将通过在空气极侧流过的大量的氧化剂气体(阴极气体,即含有O2和CO2的气体)而除去。通常通过调整空气极侧的流量,把以600℃供给的气体在700℃排出。为此采用了阴极气体再循环,使空气极侧的排气形成约700℃的高温。因此,在这个循环回路中设置了热交换器,将气体温度冷却到600℃,形成电池入口适宜的温度,与来自触媒燃烧器的供给气体相混合。空气极侧的出入口温度,取决于再循环和来自压缩机的供给空气流量和再循环回路中的热交换量。 排热回收系统(末级循环),是由利用空气极侧排气的膨胀式涡轮机和利用蒸汽的汽轮机发电来构成。膨胀式涡轮机与压缩机的相组合,其剩余动力用于发电。蒸汽是由来自其下流的热回收和煤气化装置以及阴极气体再循环回路中的蒸汽发生器之间的组合产生,形成汽水循环。 这种机组的发电效率,因煤气化方式和煤气精制方式等的不同而有若干差异。利用煤系统SOFC其构成是复杂的。但若用管道气就简单多了,主要的是采用煤炭气化系统造成的,其效率为45~55%。

㈤ 燃料电池的弊端拜托各位大神

燃料电池有节能、转换效率高、不需要石油燃料、达到零污染排放、结构简单、运行平稳等优点, 但也有以下一些缺点: 1) 燃料种类单一 目前,不论是液态氢、气态氢、储氢金属储存的氢,还有碳水化合物经过重整后转换的氢是燃料电池的唯一燃料。氢气的产生、储存、保管、运输和灌装或重整,都比较复杂,对安全性要求很高。但燃料种类的单一性,可以建立标准化、统一的供给系统。 2) 要求高质量的密封 燃料电池的单体电池所能产生的电压约为1V,不同种类的燃料电池的单体电池所能产生的电压略有不同。通常将多个单体电池按使用电压和电流的要求组合成为燃料电池发动机组,在组合时,单体电池间的电极连接时,必须要有严格的密封,因为密封不良的燃料电池,氢气会泄漏到燃料电池的外面,降低了氢的利用率并严重影响燃料电池发动机的效率,还会引起氢气燃烧事故。由于要求严格的密封,使得燃料电池发动机的制造工艺很复杂,并给使用和维护带来很多困难。 3) 比功率还要进一步提高 内燃机的比功率约为300W/kg,以氢为燃料的燃料电池比功率约为300~350W/kg,功率密度为280W/L。甲醇经过重整产生的氢为燃料的燃料电池综合功率密度(包括重整器质量)降低到220W/L。为了满足FCEV动力性能的要求,需要进一步提高燃料电池发动机的比功率。 4) 造价太高 目前质子交换膜燃料电池是最有发展前途的燃料电池之一,但质子交换膜燃料电池需要用贵金属铂(Pt)作为催化剂,其使用量要求达到0.1~0.2mg/cm3,目前用量要求达到0.5mg/cm3,距离要求还较远。而且铂(Pt)在反应过程中受CO 的作用会"中毒"而失效。铂(Pt)的使用和铂(Pt)的失效使质子交换膜燃料电池的造价持高不下。 5) 需要配备辅助电池系统 燃料电池可以持续发电,但不能充电和回收FCEV再生制动的反馈能量。通常在FCEV上还要增加辅助电池,来储存燃料电池富裕的电能和在FCEV减速时接受再生制动时的能量。

㈥ 马斯克表示,燃料电池应该叫“智商税”!你也是这么认为的吗

我并不是这样认为的,每一项技术能够应用在商品中都有它自己独特的优点,马斯克这样说是因为特斯拉的燃料电池技术并没有领先其他企业太多,在行业中不是处于领头羊的地位,一旦燃料电池发展起来应用到汽车上,那么特斯拉就会立刻失去现在的市场地位,从而导致它的股价大跌,如果特斯拉的燃料电池技术搞得特别好,那么他就不会这样说了。

或许现在的燃料电池有各种各样的缺点,但它毕竟是一种新的技术,我们应该对它有更多的包容。

㈦ 燃料电池和蓄电池有何区别

燃料电池和蓄电池的区别如下:

1、原料不同:

燃料电池燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。用燃料和氧气作为原料。

蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。用填满海绵状铅的铅基板栅(又称格子体)作负极,填满二氧化铅的铅基板栅作正极,并用密度1.26--1.33g/mlg/ml的稀硫酸作电解质。

2、工作原理不同:

燃料电池是按电化学原理,即原电池工作原理,等温的把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。

蓄电池充电时利用外部的电能使内部活性物质再生,把电能储存为化学能,需要放电时再次把化学能转换为电能输出。

3、特点不同:

燃料电池发电效率高、环境污染小、噪音低、燃料范围广、可靠性高、易于建设,被誉为是继水力、火力、核电之后的第四代发电技术。

蓄电池电压平稳、安全可靠、价格低廉、适用范围广、原材料丰富和回收再生利用率高等优点,是世界上各类电池中产量最大、用途最广的一种电池。

㈧ 燃料电池多少钱一块

对于重度智能机用户来说,标配一块大容量移动电源,似乎已经成为了他们日常生活的一部分。但是在移动电源的电量也消耗殆尽之后,我们如何才能快速地为其补充能量呢?

一个有趣的解决方案是,把采用普通电芯的充电宝,换成可填充燃料的型号—比如MyFC JAQ燃料电池充电器。

该公司首席执行官Bjorn Westerholm表示:“我们已经打造出了世界上最强大、但又便于携带的燃料电池”。

来自瑞典的MyFC JAQ,其长宽只有信用卡般大小。在向充满水和盐的仓盒中注入燃料之后,就能够通过化学反应来生成电能。

MyFC JAQ的每节电芯都可以提供2400mAh的电量,因此足以将一部iPhone 6充到满。

不过这种燃料电池也有个缺点,你必须抓紧时间给设备充电,不然在1到2个小时之后,能量就会耗散光了。

为了相对绿色地解决能源问题,MyFC JAQ的“电芯”采用了回收塑料和少量普通金属来打造。

与氢燃料电池相比,MyFC JAQ无需担心填充或储存易燃的物质。理论上来说,你可以“用完1节丢1节”。不过MyFC还是希望大家能够在买新电芯的时候,将旧电芯拿来回收。

㈨ 除了氢燃料电池外,还有其他可再生的燃料电池么

1、燃料电池的研究,正在飞速发展,但多仍存在一些困难需要克服
2、除了氢电池以外,还有一些可再生的燃料电池
3、比如以甲烷为燃料的电池
4、乙醇电池
5、甲醇电池等。。。
一般都没有进入实用阶段

㈩ 干电池、充电电池、燃料电池各自的特点、用途、回收途径和电池反应~

干电池
常用的一种是碳-锌干电池(图3)。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH嬃)得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。
蓄电池
种类很多,共同的特点是可以经历多次充电、放电循环,反复使用。

概述
简单地说,燃料电池(Fuel Cell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。燃料电池的概念是1839年G.R.Grove提出的,至今已有大约160年的历史。
[编辑本段]燃料电池的特点
燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等学科的有关理论,具有发电效率高、环境污染少等优点。总的来说,燃料电池具有以下特点:
(1)能量转化效率高 他直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。目前燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。
(2)有害气体SOx、NOx及噪音排放都很低 CO2排放因能量转换效率高而大幅度降低,无机械振动。
(3)燃料适用范围广
(4)积木化强 规模及安装地点灵活,燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。燃料电池无论作为集中电站还是分布式电,或是作为小区、工厂、大型建筑的独立电站都非常合适
(5)负荷响应快,运行质量高 燃料电池在数秒钟内就可以从最低功率变换到额定功率,而且电厂离负荷可以很近,从而改善了地区频燃料电池原理率偏移和电压波动,降低了现有变电设备和电流载波容量,减少了输变线路投资和线路损失。
[编辑本段]“燃料”和“电池”
为了了解它的价值,让我们分别研究一下“燃料”和“电池”这两个词。
为了利用煤或者石油这样的燃料来发电,必须先燃烧煤或者石油。它们燃烧时产生的能量可以对水加热而使之变成蒸汽,蒸汽则可以用来使涡轮发电机在磁场中旋转。这样就产生了电流。换句话说,我们是把燃料的化学能转变为热能,然后把热能转换为电能。在这种双转换的过程中,许多原来的化学能浪费掉了。然而,燃料非常便宜,虽有这种浪费,也不妨碍我们生产大量的电力,而无需昂贵的费用。还有可能把化学能直接转换为电能,而无需先转换为热能。为此,我们必须使用电池。这种电池由一种或多种化学溶液组成,其中插入两根称为电极的金属棒。每一电极上都进行特殊的化学反应,电子不是被释出就是被吸收。一个电极上的电势比另一个电极上的大,因此,如果这两个电极用一根导线连接起来,电子就会通过导线从一个电极流向另一个电极。这样的电子流就是电流,只要电池中进行化学反应,这种电流就会继续下去。手电筒的电池是这种电池的一个例子。在某些情况下,当一个电池用完了以后,人们迫使电流返回流入这个电池,电池内会反过来发生化学反应,因此,电池能够贮存化学能,并用于再次产生电流。汽车里的蓄电池就是这种可逆电池的一个例子。在一个电池里,浪费的化学能要少得多,因为其中只通过一个步骤就将化学能转变为电能。然而,电池中的化学物质都是非常昂贵的。锌用来制造手电筒的电池。如果你试图使用足够的锌或类似的金属来为整个城市准备电力,那么,一天就要花成本费数十亿美元。
燃料电池是一种把燃料和电池两种概念结合在一起的装置。它是一种电池,但不需用昂贵的金属而只用便宜的燃料来进行化学反应。这些燃料的化学能也通过一个步骤就变为电能,比通常通过两步方式的能量损失少得多。于是,可以为人类提供的电量就大大地增加了。
目前,燃料电池按电解质划分已有6个种类得到了发展,即碱性燃料电池(Alkaline Fuel Cell,AFC)、磷酸盐型燃料电池(Phosphoric Acid Fuel Cell,PAFC)、熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell,MCFC)、固体氧化物型燃料电池(Solid Oxide Fuel Cell,SOFC)、固体聚合物燃料电池(Solid Polymer Fuel Cell,SPFC,又称为质子交换膜燃料电池,Proton Exchange Membrane Fuel Cell,PEMFC)、及生物燃料电池(BEFC)。按工作温度它们又分为高、中、低温型燃料电池。工作温度从室温到373K(100℃)的为常温燃料电池,如SPFC;工作温度在373K(100℃)~573K(300℃)之间的为中温燃料电池,如PAFC;工作温度在873K(600℃)以上的为高温燃料电池,如MCFC和SOFC。
燃料电池实质上是以控制氢弹爆炸的观念设计,太空船上的燃料电池是用来聚集星际旅行之间的氢气所产生的能量之用。太空船的太阳能板所聚集的电磁和太阳能将会转换成电能,而电能会用来慢慢地将存放在燃料电池内的氢置换成燃料。燃料电池也内含了一小部份受控制量的可进行核分裂的物质,这些物质依序用来与氢核进行核反应。核反应在燃料电池内进行,在太空旅程中提供高能量并加速离子引擎来推进太空船。在最后的旅程阶段,燃料电池提供了燃料火箭动力所需的氢。这整个过程受控在强大的电磁下,它能提供能量并且避免过量的能量外泄导致反应炉核心融毁。核反应的一项副产物——热能,则被燃料电池的外壁吸收并转换成供给电脑、维生系统和其他必要功用的电能。
经过多年的探索,最有望用于汽车的是质子交换膜燃料电池。它的工作原理是:将氢气送到负极,经过催化剂(铂)的作用,氢原子中两个电子被分离出来,这两个电子在正极的吸引下,经外部电路产生电流,失去电子的氢离子(质子)可穿过质子交换膜(即固体电解质),在正极与氧原子和电子重新结合为水。由于氧可以从空气中获得,只要不断给负极供应氢,并及时把水(蒸汽)带走,燃料电池就可以不断地提供电能。
世界上最小的燃料电池——直径只有3毫米
美国科学家最近研制出世界上最小的燃料电池,这种电池的直径只有3毫米,可以产生0.7伏的电压并能持续供电30个小时,这种燃料电池可以在不消耗电的情况下发电,它由四个部分组成。上一层是储水池,下层是一个装有金属氢化物的燃料堂,中间以一层薄膜隔开,在金属氢化物的燃料堂下放,还有一组电极。薄膜上还有许多小孔,使得储水池中的水分子可以以水蒸气的形式进入燃料堂,水分子进入燃料堂后,与金属氢化物发生生化学反应幷产生氢气。氢气随之会充满整个燃料堂,幷向上冲击薄膜。阻止水流继续流入,然后氢气会在燃料堂下层的电极处发生化学反应,形成电流。
新电池体积非常的小,规模为 3x3x1毫米。而且没有重力。其表现张力可以控制水流,这意味着即使处于移动的旋转状态下,也能够很好的工作。因此它最适用于一些小电器。现在,这种电池可以产生0.7伏电压和一毫安电流,电燃料可以持续30小时左右。
[编辑本段]燃料电池的发明
虽然燃料电池这个名词出现在人们 眼前的时间并不长,但它的历史已经可以追溯到100多年前了。在1889年,Ludwig Mond和Charles Langer两位化学家想用空气和工业煤气制造一个实用的能提供电能的装置,“燃料电池”一词也就随着他们的发明而诞生了。现代燃料电池技术兴起于20世纪60年代,为了给航天飞机寻找高效能的电能装置, 美国宇航局跟GE公司合作开发了第一个现代意义上的燃料电池—质子交换膜燃料电池,这也是燃料电池商用化的开始。此后,历经40多年的发展,燃料电池的家族越发的人丁兴旺,而应用领域也遍及各处。
[编辑本段]中国燃料电池技术的发展现状
中国早在20世纪50年代就开展燃料电池方面的研究。中国在燃料电池关键材料、关键技术的创新方面取得了许多突破。中国政府十分注重燃料电池的研究开发,陆续开发出百瓦级-30kW级氢氧燃料电极、燃料电池电动汽车等。燃料电池技术特别是质子交换膜燃料电池技术也得到了迅速发展,开发出60kW、75kW等多种规格的质子交换膜燃料电池组,开发出电动轿车用净输出40kW、城市客车用净输出100kW燃料电池发动机,使中国的燃料电池技术跨入世界先进国家行列。
在当今全球能源紧张、油价高涨的时代,寻找新能源作为化石燃料的替代品是当务之急。因为氢能的优势明显,清洁、高效,因此得到各国政府的大力支持,加上各种能源动力企业对燃料电池的发展信心十足,所以燃料电池未来市场将有巨大的上升空间。
尽管现在燃料电池的市场需求相当小,预计在随后的十年间,随着技术进步与规模经济效益,燃料电池的生产成本与使用成本将下降,竞争力提高,燃料电池潜在的市场将会逐步发展起来。现在对于便携式燃料电池的需求相当少,但便携式燃料电池市场将是从现在到2011年甚至更长时间增长最快的市场。应用于消费电子产品的燃料电池系统在最近几年中就会商业化。
[编辑本段]燃料电池技术分类
燃料电池的种类按不同的方法可大致分类如下:
1. 按燃料电池的运行机理分。
分为酸性燃料电池和碱性燃料电池。
2. 按电解质的种类不同,有酸性、碱性、熔融盐类或固体电解质。
因此,燃料电池可分为碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)等。在燃料电池中,磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)可以冷起动和快起动,可以用作为移动电源,适应FCEV使用的要求,更加具有竞争力。
3. 按燃料类型分。
有氢气、甲醇、甲烷、乙烷、甲苯、丁烯、丁烷等有机燃料,汽油、柴油和天然气等气体燃料,有机燃料和气体燃料必须经过重整器"重整"为氢气后,才能成为燃料电池的燃料。
4. 按燃料电池工作温度分。
有低温型,温度低于200℃;中温型,温度为200~750℃;高温型,温度高于750℃。
在常温下工作的燃料电池,例如质子交换膜燃料电池(PEMFC),这类燃料电池需要采用贵金属作为催化剂。燃料的化学能绝大部分都能转化为电能,只产生少量的废热和水,不产生污染大气环境的氮氧化物。不需要废热能量回收装置,体积较小,质量较轻。但催化剂铂(Pt)会与工作介质中的一氧化碳(CO)发生作用后产生"中毒"现象而失效,使燃料电池效率降低或完全损坏。而且铂(Pt)的价格很高,增加了燃料电池的成本。
另一类是在高温(600~1000℃)下工作的燃料电池,例如熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电池(SOFC),这类的燃料电池不需要采用贵金属作为催化剂。但由于工作温度高,需要采用复合废热回收装置来利用废热,体积大,质量重,只适合用于大功率的发电厂中。
最实用的燃料电池是以氢或含富氢的气体燃料,但是在自然界是不能直接获得氢的,燃料电池氢的;来源通常是以石油燃料、甲醇、乙醇、沼气、天然气、石脑油和煤气中,经过重整、裂解等化学处理后来制取含富氢的气体燃料。氧化剂则采用氧气或空气,最常见的是用空气作为氧化剂。