1. 杠杆原理及公式
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。
公式:F1×L1=F2×L2变形式:F1:F2=L1:L2动力回臂是阻答力臂的几倍,那么动力就是阻力的几分之一。
杠杆静止不动或匀速转动都叫做杠杆平衡。
通过力的作用点沿力的方向的直线叫做力的作用线
从支点O到动力F1的作用线的垂直距离L1叫做动力臂
从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
杠杆平衡的条件(文字表达式):动力×动力臂=阻力×阻力臂
动力臂×动力=阻力臂×阻力,即L1×F1=L2×F2,由此可以演变为F1/F2=L1/L2杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
假如动力臂为阻力臂的n倍,则动力大小为阻力的1/n"大头沉"
动力臂越长越省力,阻力臂越长越费力.
省力杠杆费距离;费力杠杆省距离。
等臂杠杆既不省力,也不费力。可以用它来称量。在力学里,典型的杠杆(lever)是置放
2. 杠杆原理是什么
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
杠杆可以让“小力”做出“大力”能做的功。
任何机械所输出的能量,都不可能比输入它的能量还多,这是“能量守恒定律”的要求。因此,对于一个理想的机械,它的“能量输出”最多与“能量输入”是相等的,这个时候,机械所输出的功,等于输入它的功。
可以想象一个用杠杆来翘起物体的例子。在过程中,杠杆所输出的功,是“物体的重量”与“物体被抬起的高度”(或者说“输出距离”)的乘积。而输入杠杆的功,则是人所施加的“力”与“向下压的距离”(或者说“输入距离”)的乘积。
在理想的情况下,“输出的功”与“输入的功”相等,也就是“物体的重量”与“输出距离”的乘积,等于“力”与“输入距离”的乘积。这就意味着,在物体的重量一定的前提下,“力”的大小取决于“输入距离”与“输出距离”的比例。
3. 杠杆原理及公式
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。
公式:F1×L1=F2×L2变形式:F1:F2=L1:L2动力臂回是阻力臂的几倍答,那么动力就是阻力的几分之一。
杠杆静止不动或匀速转动都叫做杠杆平衡。
通过力的作用点沿力的方向的直线叫做力的作用线
从支点O到动力F1的作用线的垂直距离L1叫做动力臂
从支点O到阻力F2的作用线的垂直距离L2叫做阻力臂
杠杆平衡的条件(文字表达式):动力×动力臂=阻力×阻力臂
动力臂×动力=阻力臂×阻力,即L1×F1=L2×F2,由此可以演变为F1/F2=L1/L2杠杆的平衡不仅与动力和阻力有关,还与力的作用点及力的作用方向有关。
假如动力臂为阻力臂的n倍,则动力大小为阻力的1/n"大头沉"
动力臂越长越省力,阻力臂越长越费力.
省力杠杆费距离;费力杠杆省距离。
等臂杠杆既不省力,也不费力。可以用它来称量。在力学里,典型的杠杆(lever)是置放
4. 杠杆的原理是什么
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力回(用力点、支点和阻答力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一
5. 杠杆原理示意图
杠杆绕着转动的支撑点叫做支点,力和力臂的大小成反比,保持杠杆平衡(静止),或者是滑轮匀速转动,,不动得点,即支点。
6. 杠杆原理
物理学中把在力的作用下可以围绕固定点转动的坚硬物体叫做杠杆。
五要素:动力,阻力,动力臂,阻力臂和支点
1、支点:杠杆的固定点,通常用O表示。
2、动力:驱使杠杆转动的力,用F1表示。
3、阻力:阻碍杠杆转动的力,用F2表示。
4、动力臂:支点到动力作用线的垂直距离叫动力臂,用L1表示。
5、阻力臂:支点到阻力作用线的垂直距离叫阻力臂,用L2表示。
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力(用力点、支点和阻力点)的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1· l1=F2·l2。式中,F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂。从上式可看出,欲使杠杆达到平衡,动力臂是阻力臂的几倍,动力就是阻力的几分之一。
7. 用简单的话解释一下杠杆原理,最好有图解。。
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡版条件”。要使杠杆平衡,作用在杠杆上权的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。
如下图所示为杠杆原理的最好解释。
8. 怎样从数学的角度解释杠杆原理最好有图示
杠杆又分称费力杠杆、省力杠杆和等臂杠杆,杠杆原理也称为“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用代数式表示为F1· L1=F2·L2。式中,F1表示动力,L1表示动力臂,F2表示阻力,L2表示阻力臂。从上式可看出,要使杠杆达到平衡,动力臂是阻力臂的几倍,阻力就是动力的几倍。
中文名
杠杆原理
外文名
lever principle
别 称
杠杆平衡条件
表达式
F1· L1=F2·L2.
提出者
阿基米德
提出时间
公元前245年左右
应用学科
物理科学
适用领域范围
杠杆力学
适用领域范围
建筑,物理,机械
原理提出
古希腊科学家阿基米德有这样一句流传很久的名言:“给我一个支点,我就能撬起整个地球!”,这句话便是说杠杆原理。
阿基米德在《论平面图形的平衡》一书中最早提出了杠杆原理。他首先把杠杆实际应用中的一些经验知识当作“不证自明的公理”,然后从这些公理出发,运用几何学通过严密的逻辑论证,得出了杠杆原理。
阿基米德
这些公理是:
(1)在无重量的杆的两端离支点相等的距离处挂上相等的重量,它们将平衡;
(2)在无重量的杆的两端离支点相等的距离处挂上不相等的重量,重的一端将下倾;
(3)在无重量的杆的两端离支点不相等距离处挂上相等重量,距离远的一端将下 倾;
(4)一个重物的作用可以用几个均匀分布的重物的作用来代替,只要重心的位置保持不变。相反,几个均匀分布的重物可以用一个悬挂在它们的重心处的重物来代替
(5)相似图形的重心以相似的方式分布……
正是从这些公理出发,在“重心”理论的基础上,阿基米德发现了杠杆原理,即“二重物平衡时,它们离支点的距离与重量成反比。”阿基米德对杠杆的研究不仅仅停留在理论方面,而且据此原理还进行了一系列的发明创造。据说,他曾经借助杠杆和滑轮组,使停放在沙滩上的船只顺利下水,在保卫叙拉古免受罗马海军袭击的战斗中,阿基米德利用杠杆原理制造了远、近距离的投石器,利用它射出各种飞弹和巨石攻击敌人,曾把罗马人阻于叙拉古城外达3年之久。
这里还要顺便提及的是,在中国历史上也早有关于杠杆的记载。战国时代的墨子曾经总结过这方面的规律,在《墨经》中就有两条专门记载杠杆原理的。这两条对杠杆的平衡说得很全面。里面有等臂的,有不等臂的;有改变两端重量使它偏动的,也有改变两臂长度使它偏动的。这样的记载,在世界物理学史上也是非常有价值的。
概念分析
编辑
在使用杠杆时,为了省力,就应该用动力臂比阻力臂长的杠杆;如果想要省距离,就应该用动力臂比阻力臂短的杠杆。因此使用杠杆可以省力,也可以省距离。但是,要想省力,就必须多移动距离;要想少移动距离,就必须多费些力。要想又省力而又少移动距离,是不可能实现的。
杠杆的支点不一定要在中间,满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。
其中公式这样写:动力×动力臂=阻力×阻力臂,即F1×L1=F2×L2这样就是一个杠杆。
动力臂延伸
杠杆也有省力杠杆跟费力的杠杆,两者皆有但是功能表现不同。例如有一种用脚踩的打气机,或是用手压的榨汁机,就是省力杠杆 (动力臂 > 阻力臂);但是我们要压下较大的距离,受力端只有较小的动作。另外有一种费力的杠杆。例如路边的吊车,钓东西的钩子在整个杆的尖端,尾端是支点、中间是油压机 (力矩 > 力臂),这就是费力的杠杆,但费力换来的就是中间的施力点只要动小距离,尖端的挂勾就会移动相当大的距离。
两种杠杆都有用处,只是要用的地方要去评估是要省力或是省下动作范围。另外有种东西叫做轮轴,也可以当作是一种杠杆的应用,不过表现尚可能有时要加上转动的计算。
古希腊科学家阿基米德有这样一句流传千古的名言:"假如给我一个支点,就能撬起地球"这句话不仅是催人奋进的警句,更是有着严格的科学根据的。
9. 杠杆原理是什么
杠杆原理亦称“杠杆平衡条件”。要使杠杆平衡,作用在杠杆上的两个力的大小跟它们的力臂成反比。动力×动力臂=阻力×阻力臂,用代数式表示为F1• l1=F2•l2。F1动力,l1动力臂,F2阻力,l2阻力臂。