1. 黄金比例是多少
1、K:指黄金的纯度。
2、纯度:指色彩的鲜艳度。从科学的角度看,一种颜色的鲜艳度取决于这一色相发射光的单一程度。人眼能辨别的有单色光特征的色,都具有一定的鲜艳度。不同的色相不仅明度不同,纯度也不相同。例如颜料中的红色是纯度最高的色相,橙、黄、紫等色在颜料中纯度也较高,蓝绿色在颜料中是纯度最低的色相。在日常的视觉范围内,眼睛看到的色彩绝大多数是含灰的色,也就是不饱和的色。有了纯度的变化,才使世界上有如此丰富的色彩。同一色相即使纯度发生了细微的变化,也会带来色彩性格的变化。 每开(英文carat、德文karat的缩写,常写作"k")含金量为4.166%,18k=18*4.166%=74.998%,24k=24*4.166%=99.984% 24K含金99%,22K含91.7%,18K含75.1%,14K含58.5%,12K含50%。
3.含量
目前市场上销售的黄金饰品,分为足金和K金饰品,根据国家标准GB11887中的规定。
常见的几种黄金首饰含量为:
24K——目前市场偶见标有24K黄金饰品,根据国家标准,24K金含量理论值应为百分之百,金无赤足,因此严格的讲,24K是不存在的,销售中标有24K金是不正确的,不符合国家标准。
千足金——含量为99.9%,俗称三个9。
足金——含量为99.0%,以上,俗称二个9。
18K——含量为75.0%,K金的颜色有多种,通常有黄、红、白色之分。其中白色K金,实际上是黄金与镍、锌、铜等元素的合金。它不是通常所说的白金饰品。白金是指贵金属铂(Pt)
2. 黄金的比重是多少
19.32g/cm³ (20℃)。
黄金(Gold)是化学元素金(化学元素符号Au)的单质形式,是一种软的,金黄色的,抗腐蚀的贵金属。金是较稀有、较珍贵和极被人看重的金属之一。
国际上一般黄金都是以盎司为单位,中国古代是以“两”作为黄金单位,是一种非常重要的金属。不仅是用于储备和投资的特殊通货,同时又是首饰业、电子业、现代通讯、航天航空业等部门的重要材料。
黄金的化学符号为Au,金融上的英文代码是XAU或者是GOLD。Au的名称来自一个罗马神话中的黎明女神欧若拉(Aurora )的一个故事,意为闪耀的黎明。
(2)黄金比大小扩展阅读
黄金首饰的选购有以下:
1、要有正规的税务发票,标明:饰品名称、成色、重量,以便日后查询。
2、目前商店所售饰品多为深圳、广州一带的首饰,其特点是款式新颖、美观大方,但纯度不一定很高;还有浙江生产的饰品,款式比较传统化,但含金量相对较高。
3、应仔细检查饰品有无毛刺、链身是否平直、搭扣、接头、耳夹等是否安全。为了使手链的搭扣、耳环的接头、耳头等部位更牢固,这些部位的成色要低些。
4、首饰的佩戴时有时会变白,这是因首饰与化妆品、洗发液、洗洁精或摩丝等相接触时,发生化学反应,所以在佩戴过程中也应少与化妆品接触,一旦发生,可凭发票要求商店解决。平时存放首饰时,最好用柔软的布,把每件饰品分开包装,以免相互摩擦,造成损失。
3. 关于黄金比
分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。
人体美学中的黄金分割
人体美学观察受到种族、社会、个人各方面因素的影响,牵涉到形体与精神、局部与整体的辩证统一,只有整体的和谐、比例协调,才能称得上一种完整的美。本次讨论的问题主要为美学观察的一些定律。
(一)黄金分割律 这是公元前六世纪古希腊数学家毕达哥拉斯所发现,后来古希腊美学家柏拉图将此称为黄金分割。这其实是一个数字的比例关系,即把一条线分为两部分,此时长段与短段之比恰恰等于整条线与长段之比,其数值比为1.618 : 1或1 : 0.618,也就是说长段的平方等于全长与短段的乘积。0.618,以严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。 为什么人们对这样的比例,会本能地感到美的存在?其实这与人类的演化和人体正常发育密切相关。据研究,从猿到人的进化过程中,骨骼方面以头骨和腿骨变化最大,躯体外形由于近似黄金而矩形变化最小,人体结构中有许多比例关系接近0.618,从而使人体美在几十万年的历史积淀中固定下来。人类最熟悉自己,势必将人体美作为最高的审美标准,由物及人,由人及物,推而广之,凡是与人体相似的物体就喜欢它,就觉得美。于是黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰! 近年来,在研究黄金分割与人体关系时,发现了人体结构中有14个“黄金点”(物体短段与长段之比值为 0.618),12个“黄金矩形”(宽与长比值为 0.618的长方形)和2个“黄金指数”(两物体间的比例关系为 0.618)。 黄金点:(1)肚脐:头顶-足底之分割点;(2)咽喉:头顶-肚脐之分割点;(3)、(4)膝关节:肚脐-足底之分割点;(5)、(6)肘关节:肩关节-中指尖之分割点;(7)、(8)乳头:躯干乳头纵轴上这分割点;(9)眉间点:发际-颏底间距上1/3与中下2/3之分割点;(10)鼻下点:发际-颏底间距下1/3与上中2/3之分割点;(11)唇珠点:鼻底-颏底间距上1/3与中下2/3之分割点;(12)颏唇沟正路点:鼻底-颏底间距下1/3与上中2/3之分割点;(13)左口角点:口裂水平线左1/3与右2/3之分割点;(14) 右口角点:口裂水平线右1/3与左2/3之分割点。 面部黄金分割律 面部三庭五眼 黄金矩形:(1)躯体轮廓:肩宽与臀宽的平均数为宽,肩峰至臀底的高度为长;(2)面部轮廓:眼水平线的面宽为宽,发际至颏底间距为长;(3)鼻部轮廓:鼻翼为宽,鼻根至鼻底间距为长;(4)唇部轮廓:静止状态时上下唇峰间距为宽,口角间距为长;(5)、(6)手部轮廓:手的横径为宽,五指并拢时取平均数为长;(7)、(8)、(9)、(10)、(11)、(12)上颌切牙、侧切牙、尖牙(左右各三个)轮廓:最大的近远中径为宽,齿龈径为长。
黄金指数:(1)反映鼻口关系的鼻唇指数:鼻翼宽与口角间距之比近似黄金数;(2)反映眼口关系的目唇指数:口角间距与两眼外眦间距之比近似黄金数。 0.618,作为一个人体健美的标准尺度之一,是无可非议的,但不能忽视其存在着“模糊特性”,它同其它美学参数一样,都有一个允许变化的幅度,受种族、地域、个体差异的制约。
(二)比例关系 是用数字来表示人体美,并根据一定的基准进行比较。用同一人体的某一部位作为基准,来判定它与人体的比例关系的方法被称为同身方法(见中图)。分为三组:系数法,常指头高身长指数,如画人体有坐五、立七,即身高在坐位时为头高的五倍、立位时为7或7.5倍;百分数法,将身长视为100%,身体各部位在其中的比例;两分法:即把人体分成大小两部分,大的部分从脚到脐,小的部分为脐到头顶。 标准的面型,其长宽比例协调,符合三停五眼(见右图)。三停是指脸型的长度,从头部发际到下颏的距离分为三等分,即从发际到眉、眉到鼻尖、鼻尖到下颏各分为一等分,各称一停共三停;五眼是指脸型的宽度,双耳间正面投影的长度为五只眼裂的长度,除眼裂外、内此间距为一眼裂长度、两侧外眦角到耳部各有一眼裂长度,
参考资料:http://www.188s.com/ReadNews.asp?NewsID=468
4. 黄金比例是多少
我们常常听说有“黄金分割”这个词,“黄金分割”当然不是指的怎样分割黄金,这是一个比喻的说法,就是说分割的比例像黄金一样珍贵。那么这个比例是多少呢?是0.618。人们把这个比例的分割点,叫做黄金分割点,把0.618叫做黄金数。并且人们认为如果符合这一比例的话,就会显得更美、更好看、更协调。在生活中,对“黄金分割”有着很多的应用。
最完美的人体:肚脐到脚底的距离/头顶到脚底的距离=0.618
最漂亮的脸庞:眉毛到脖子的距离/头顶到脖子的距离=0.618
从理论上讲,女性的身高与体重,四肢与躯干等部位在一定的比例下最美。专业人士在进行了大量研究后,终使美丽得以量化:
1、上、下身比例:以肚脐为界,上下身比例应为5比8,符合“黄金分割”定律。
2、胸围:由腋下沿胸部的上方最丰满处测量胸围,应为身高的一半。
3、腰围:在正常情况下,量腰的最细部位。腰围较胸围小20厘米。
4、髋围:在体前耻骨平行于臀部最大部位。髋围较胸围大4厘米。
5、大腿围:在大腿的最上部位,臀折线下。大腿围较腰围小10厘米。
6、小腿围:在小腿最丰满处。小腿围较大腿围小20厘米。
7、足颈围:在足颈的最细部位。足颈围较小腿围小10厘米。
8、上臂围:在肩关节与肘关节之间的中部。上臂围等于大腿围的一半。
9、颈围:在颈的中部最细处。颈围与小腿围相等。
10、肩宽:两肩峰之间的距离。肩宽等于胸围的一半减4厘米。
骨骼美在于匀称、适度。即站立时头颈、躯干和脚的纵轴在同一垂直线上;肩稍宽,头、躯干、四肢的比例以及头、颈、胸的连接适度。肌肉美在于富有弹性和协调。过胖过瘦或肩、臀、胸部的细小无力,以及由于某种原因造成的身体某部分肌肉的过于瘦弱或过于发达,都不能称为肌肉美。肤色美在于细腻、光泽、柔韧、摸起来有天鹅绒之感,看上去为浅玫瑰色的最佳。
5. 一克黄金有多大
黄金的比重是19.3,1克大致是2.5毫米的立方体,绿豆粒那么大 补充: 以前小说里经常说的专“扔下几粒金豆子”,属给豆粒大小的金子,一般的消费都是富富有余了。 追问: 那计算公式是怎样的了…告诉我 回答: 很简单,黄金的比重是19.3,1克水是1——1立方厘米,19.3开个立方就行了。上面说的是个大概数 追问: 就是1除19.3啰…得0·05多点…大概就是0点2毫米下,0点2毫米宽,0点1多高大小 回答: 没有那么小了,1立方厘米,是1000立方毫米。立方是3次方,所以每个边必你说的要乘10 追问: 你说得对…是我算错了2毫米长2毫米宽…1点多毫米高 回答: 呵呵,就是这样的
6. 黄金比是什么
黄金比率是指一连串神奇数字的组合,是技术分析中纯以数字运算的一种分析工具。
黄金比率是源于神奇数字(Fibonnacci Number Sequence)。黄金比率是由十三世纪末出生的意大利著名数学家Leonardo Fibonacci发现的,比率由一组神奇数字计算而成。
这串神奇数列,是任何相列的两个数字之和都等于后一个数字。即:1,1,2,3,5,8,13,21,34,55,89,144……如此类推。即1+1=2,1+2=3,2+3=5,3+5=8等。
常用到的黄金数字,是0,0.236,0.382,0.5,0.618,0.764及1,此外,亦会用到1.382,1.618等数值,其实就是1以至2等整数加上黄金数字。
(6)黄金比大小扩展阅读:
黄金比率在股市的应用
透过这些比率,可以用来测试未来市况的上升目标或下跌目标,预测升市中的调整幅度,以及跌市中的反弹幅度等。
黄金比率包括最常见的0.236倍比率、0.382倍比率、0.5倍比率、O.618倍比率、0.764倍比率、1.382倍比率、1.618倍比率、2倍及2.618倍比率等。由于黄金比率测市功效显著,准确性奇高,所以,得到市场人士广泛使用。
—般来说,在调整市中,黄金比率0.382倍、O.5倍及0.618倍被视为调整时之三级支持,支持力随向下调整的深度而逐级递增,即币况由高位回吐至0.382倍水平已有初步支持。
若该位失守,市况将进一步下试0.5倍水平,此时支持力将明显较0.382倍之支持力为大。失去守0.5倍则要到0.618倍水平才有支持,而该位的支持力将较前两级之支持更大。市况若企稳该水平以上,后市基调仍然向好。
此外,另两个比率O.236倍及0.764倍则较为少用,其中前者主要在大型上升;目的中段出现,期间市况只作短暂回吐即获支持再上。而0.764倍比率则相对重要得多,主要是该比率对中期走势有重要指标作用。
技术上,市况在中期升浪中只要调整不低于0.764倍,反复向上格局不变,否则升势将被打回原形,跌回升浪之起步点。而吕有出现转势的危机,目口原有升势可能结束,或转为一上落市。
至于反弹市方面,与调整市刚好相反,0.382倍、o.5倍及0.618倍比率被视为反弹时之三级阻力,阻力随向上反弹幅度而逐级递增,即股价由低位反弹上O.382倍附近已有初步阻力。
通常在突破0.382倍阻力后可望上试0.5倍水平,但该水平的阻力亦逐渐加大。若再向上突破,股价将进一步上试0.618倍强大阻力。后市若无法向上突破,走势仍是反复向下。
量度上升或下跌水平是黄金比率中一个最重要部分,原因是这些比率可以粗略评佰或测试市况向上或向下突破后的上升或下跌目标,上升阻力及下跌支持等。最常见的比率包括1.382倍、1..618倍,2倍及2.618倍。
即是说,当市况向上或向下突破后,市况将会朝着第一个上升或下跌目标1.382倍水平推进,若能进一步突破该水平,市况将再试1.618倍第二个目标……如此类推。而上升或下跌的阻力或支持将逐级增加。
黄金比率测市连确性相当高,无论在测试上升水平或下跌水平,调整市或反弹市幅度,偏差幅度相当有限。因此,对预测后市走势有非常高的参考价值。
7. 黄金比例
168的黄金比例是168×0.618=103.824
你的腿很长嘛
黄金比例的人不多的 不然人人都可以当模特了
三围的黄金比例应该是84 64 86
8. 黄金比是怎么算出来的
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似。这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"斐波那契数列",这些数被称为"菲斐波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,...后二数之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|..........a...........|
+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -
|......b......|..a-b...|
通常用希腊字母 表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:
1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922
早在两千多年前,古希腊数学家欧多克斯就发现:如果将一个长度分割成大小两段,若小段与大段的长度之比等于大段的长度与全长之比,那么这一比值等于0.618,人称“黄金分割”。现在科学研究表明,0.618的位置经常成为自然界乃至生活的最佳状态。
稍微留心一下你会发现,节目主持人站在舞台长约占0.618的位置,会更显风采,若站在正中间,反而会显得呆滞。一个体态匀称的人,膝盖到脚趾与肚脐到脚底的长度之比也为0.618。
有趣的是,人们认为乐曲也有“黄金分割”。数学家对莫扎特的乐曲做过分析:莫扎特的每一段钢琴协奏曲都可以分成两大部分,显示部和展开——再现部。如果计算一下节拍次数,其第一部分和第二部分节拍数的比几乎与黄金分割完全一致。
0.618也可以用于健康长寿方面。人的正常体温为37℃,与0.618的乘积为22.8℃,因此人在环境温度为22℃至24℃时感觉最舒适,这时肌体的新陈代谢、生理节奏和生理功能处于最佳状态。人的动与静也应该保持0.618的比例关系,大致四分动、六分静,这是最佳的养生和长寿之道。
做一个RT三角形ABC,直边AC的长度是直边BC的一半,以A为圆心,AC为半径,做圆交AC于D,以B为圆心,BD为半径做圆交BC于E,BE与BC之比即为黄金分割。笔直可计算出,为
[5^(1/2)-1]/2≈0.618
记住0.618就可以了.这个精度足够用了.
就像圆周率一样,一般情况下记到3.14就可以了,在工程上也不过用到3.1415926.只有航空航天等领域才可能用到小数点后几十位几百位.
0.618是错误的,正确的是(根号打不出来,我用文字表达)
根号5,然后整个减1,最后整个除以2
大概就是这个形式,根号不清楚,凑合着看,根据描述写一次
(√5-1)/2
的确,一般不用太精确的,记住0.618就可以了,如果想要精确的,可以按照上面他们说的方法计算。
这里给出一个比较精确的数值:
9. 黄金比是多少
0.618
黄金律的由来和数学内涵
说起0.618,还有一个饶有趣味的传说.公元前6世纪,古希腊数学家,哲学家毕达哥拉斯(PInthagoras)有一天路过一铁匠铺,被清脆悦耳的打铁声吸引住了,驻足细听,凭直觉认定这声音有“秘密”!他走进铺里,仔细测量了铁砧和铁锤的大小,发现它们之间的比例近乎于1:o.618.回家后,他拿来一根木棒,让他的学生在这根木棒上刻下一个记号,其位置既要使木棒的两端距离不相等,又要使人看上去觉得满意。经多次实验得到一个非常一致的结果,即用C点分割木棒AB,整段AB与长段cB之比,等于长段CB与短段CA之比.毕这哥拉斯接着又发现,把较短的一段放在较长的一段上面,也产生同样的比例:以致于无穷(见图5—5—1)
经过计算得出结沦:长段(假设为a)与短段(假设为b)之比为1:o.618,其比值为L 618.可用公式
a :b=(a+b):a
表达,并存在着的数学关系.此时,长段长度的平方又恰等于整个木棒与短段长度的乘积,即a=(a+b)b
这一神奇的比例关系,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”,简称“黄金律”、“黄金比”.这里用“黄金”两字来形容这个规律的重要性,可谓是恰如其分.更奇妙的是,1除以1.618恰等于o.618,而其他数字均无此特征.例如:I除以1.718不等手o,718;1除以1.518不等于O,518……1与o.618之差的O.382,其与o.618之比也
等于o.618(精确到o.001)。因此,说黄金分割的比值是1.618(长段:短段)或是o.618(短段:长段),都是正确的.数学家们还发现2:3或3:5或5:8等都是黄金比的近似值,并以分子分母之和为新的分母(原分母为分子)而递增,即3/5.5/8.8/13,,13/21,21/34.34/55、55/88……数字越大,其分子分母的比值就越接近O.618,数学上将此称为“弗波纳齐数列”。根据这个数列规律,又可从“线段”黄金比求出“面积”黄金比.近代建筑学家勒.柯布西埃就是根据此数列发明了“黄金尺”(建筑标准尺,以I.6倍略强的比例递增)。中世纪数学家开普勒(Kepler)将黄金分割律和勾股定理并称为“几何学中的两大宝藏”。19世纪威尼斯数学家帕乔里将黄金分割律誉为“神赐的比例”.