Ⅰ 黄金分割的比值是多少
黄金分割又称来黄金律,是指各事物自各部一定的数学比例,就是将一个整体一分为二,这两部分较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字,这个比例最能引起人的美感比例,因此称之为黄金分割。
黄金分割其比值是5/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。另一侧则是3-5/2。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值是标准的黄金分割,这个数值用之广泛,它不仅是体现在绘画、雕塑、音乐、建筑等艺术领域,还体现于管理、工程设计等方面。
Ⅱ 黄金的比值是多少
你问的是黄金比吧!是0.618 望采纳
Ⅲ 黄金比是什么
黄金比率是指一连串神奇数字的组合,是技术分析中纯以数字运算的一种分析工具。
黄金比率是源于神奇数字(Fibonnacci Number Sequence)。黄金比率是由十三世纪末出生的意大利著名数学家Leonardo Fibonacci发现的,比率由一组神奇数字计算而成。
这串神奇数列,是任何相列的两个数字之和都等于后一个数字。即:1,1,2,3,5,8,13,21,34,55,89,144……如此类推。即1+1=2,1+2=3,2+3=5,3+5=8等。
常用到的黄金数字,是0,0.236,0.382,0.5,0.618,0.764及1,此外,亦会用到1.382,1.618等数值,其实就是1以至2等整数加上黄金数字。
(3)黄金比的比值扩展阅读:
黄金比率在股市的应用
透过这些比率,可以用来测试未来市况的上升目标或下跌目标,预测升市中的调整幅度,以及跌市中的反弹幅度等。
黄金比率包括最常见的0.236倍比率、0.382倍比率、0.5倍比率、O.618倍比率、0.764倍比率、1.382倍比率、1.618倍比率、2倍及2.618倍比率等。由于黄金比率测市功效显著,准确性奇高,所以,得到市场人士广泛使用。
—般来说,在调整市中,黄金比率0.382倍、O.5倍及0.618倍被视为调整时之三级支持,支持力随向下调整的深度而逐级递增,即币况由高位回吐至0.382倍水平已有初步支持。
若该位失守,市况将进一步下试0.5倍水平,此时支持力将明显较0.382倍之支持力为大。失去守0.5倍则要到0.618倍水平才有支持,而该位的支持力将较前两级之支持更大。市况若企稳该水平以上,后市基调仍然向好。
此外,另两个比率O.236倍及0.764倍则较为少用,其中前者主要在大型上升;目的中段出现,期间市况只作短暂回吐即获支持再上。而0.764倍比率则相对重要得多,主要是该比率对中期走势有重要指标作用。
技术上,市况在中期升浪中只要调整不低于0.764倍,反复向上格局不变,否则升势将被打回原形,跌回升浪之起步点。而吕有出现转势的危机,目口原有升势可能结束,或转为一上落市。
至于反弹市方面,与调整市刚好相反,0.382倍、o.5倍及0.618倍比率被视为反弹时之三级阻力,阻力随向上反弹幅度而逐级递增,即股价由低位反弹上O.382倍附近已有初步阻力。
通常在突破0.382倍阻力后可望上试0.5倍水平,但该水平的阻力亦逐渐加大。若再向上突破,股价将进一步上试0.618倍强大阻力。后市若无法向上突破,走势仍是反复向下。
量度上升或下跌水平是黄金比率中一个最重要部分,原因是这些比率可以粗略评佰或测试市况向上或向下突破后的上升或下跌目标,上升阻力及下跌支持等。最常见的比率包括1.382倍、1..618倍,2倍及2.618倍。
即是说,当市况向上或向下突破后,市况将会朝着第一个上升或下跌目标1.382倍水平推进,若能进一步突破该水平,市况将再试1.618倍第二个目标……如此类推。而上升或下跌的阻力或支持将逐级增加。
黄金比率测市连确性相当高,无论在测试上升水平或下跌水平,调整市或反弹市幅度,偏差幅度相当有限。因此,对预测后市走势有非常高的参考价值。
Ⅳ 黄金比列的比值是多少
黄金分割漫谈
分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧!
寻踪探迹话名称由来
最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。
文艺复兴时期,中末比问题引起了人们广泛的注意。1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。
挂一漏万谈奇妙性质
黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。
斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列:
1,2,3,5,8,13,21,34,55,89,144,……
规律是:从第三项开始每一项是前两项之和。后人称为斐波那契数列。它与黄金分割会有什么关系呢?
让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。
中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。
抛砖引玉粗说影响及应用
黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。
十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。
它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。
真真假假道神秘传说
由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。
有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法:
人体自身美,即人体最优美的身段遵循
Ⅳ 什么是黄金比例
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是[5^(1/2)-1]/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现:
1/0.618=1.618
(1-0.618)/0.618=0.618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做“斐波那契数列”,这些数被称为“斐波那契数”。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
黄金分割〔Golden
Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618
,就像圆周率在应用时取3.14一样。
黄金矩形(Golden
Rectangle)的长宽之比为黄金分割率,换言之,矩形的长边为短边
1.618倍。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。在很多艺术品以及大自然中都能找到它。希腊雅典的巴特农神庙就是一个很好的例子,达·芬奇的《维特鲁威人》符合黄金矩形。《蒙娜丽莎》的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局。
Ⅵ 谁知道黄金比例的具体比值,谢谢
黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。 黄金比例的具体比值就是1∶0.618或1.618∶1。
Ⅶ 请问一下,黄金比的比值是多少
黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧! 寻踪探迹话名称由来 最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。 文艺复兴时期,中末比问题引起了人们广泛的注意。1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。 挂一漏万谈奇妙性质 黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。 斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列: 1,2,3,5,8,13,21,34,55,89,144,…… 规律是:从第三项开始每一项是前两项之和。后人称为斐波那契数列。它与黄金分割会有什么关系呢? 让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。 中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。 抛砖引玉粗说影响及应用 黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。 十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。 它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。 真真假假道神秘传说 由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。 有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法: 人体自身美,即人体最优美的身段遵循着G这个黄金分割比。据说在人们并未认识黄金分割之前制造的美的物品竟都恰好与黄金律暗合。如著名的爱神维纳斯与女神雅典纳的雕像下身与全身之比近于G。 据说芭蕾舞艺术的魅力也离不开G。芭蕾演员起舞时踮起脚尖,是为了展现符合G的身段比例的最优美的艺术形象。 在自然界中,G也是美的重要规律。据说特别令人心旷神怡的花,凭借的是G这个美的密码。 另外我们知道现在各国的国旗上,凡是“星”几乎无例外都画成五角星,据说就是因为五角星中多处暗含了G这个美的密码,从而使这个图形赏心悦目。 还据说报幕员处于黄金分割点处的位置时,会给观众留下一个美的印象。甚至有人说演奏弦乐器时,把“千斤”放在琴弦的黄金分割点获得的音色更优美和谐。 还有一种流行极广的说法是:黄金矩形(即两边的比等于G的矩形)比用任何其他比值作边的矩形都要美观。1876年,费希纳曾为此作过大规模的试验。结果表明喜欢黄金矩形的人数占全体的三分之一,在各种矩形中得票最多。 诸如此类的传说恐怕还有很多。一句话:哪里有G,哪里就有了美。黄金分割数G成了宇宙的美神!