當前位置:首頁 » 黃金飾品 » 黃金分割比是幾比幾
擴展閱讀
類似於金條 2021-03-31 20:26:33
何蘭黃金市廠 2021-03-31 20:26:32
蒲幣對人民幣匯率 2021-03-31 20:26:27

黃金分割比是幾比幾

發布時間: 2021-03-23 14:18:09

A. 黃金分割線的比例是多少

黃金分割線的比例是:0.618:0.382。

黃金分割線是一種古老的數學方法,黃金分割的創始人專是古希臘的畢達哥屬拉斯,他在當時十分有限的科學條件下大膽斷言:一條線段的某一部分與另一部分之比,如果正好等於另一部分同整個線段的比即0.618,那麼,這樣比例會給人一種美感。

後來,這一神奇的比例關系被古希臘著名哲學家、美學家柏拉圖譽為"黃金分割律"。

(1)黃金分割比是幾比幾擴展閱讀:

黃金分割線股市中最常見、最受歡迎的切線分析工具之一,實際操作中主要運用黃金分割來揭示上漲行情的調整支撐位或下跌行情中的反彈壓力位。不過,黃金分割線沒有考慮到時間變化對股價的影響,所揭示出來的支撐位與壓力位較為固定,投資者不知道什麼時候會到達支撐位與壓力位。

因此,如果指數或股價在頂部或底部橫盤運行的時間過長,則其參考作用則要打一定的折扣。與江恩角度線與江恩弧形相比略有遜色,但這絲毫不影響黃金分割線為實用切線工具的地位。

B. 黃金分割的比例是多少

1比0.618或1比2分之【根5減1】

C. 黃金分割比例是多少

把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:
1/0.618=1.618
(1-0.618)/0.618=0.618
這個數值的作用不僅僅體現在諸如繪畫、雕塑、音樂、建築等藝術領域,而且在管理、工程設計等方面也有著不可忽視的作用。

讓我們首先從一個數列開始,它的前面幾個數是:1、1、2、3、5、8、13、21、34、55、89、144…..這個數列的名字叫做"菲波那契數列",這些數被稱為"菲波那契數"。特點是即除前兩個數(數值為1)之外,每個數都是它前面兩個數之和。

菲波那契數列與黃金分割有什麼關系呢?經研究發現,相鄰兩個菲波那契數的比值是隨序號的增加而逐漸趨於黃金分割比的。即f(n)/f(n-1)-→0.618…。由於菲波那契數都是整數,兩個整數相除之商是有理數,所以只是逐漸逼近黃金分割比這個無理數。但是當我們繼續計算出後面更大的菲波那契數時,就會發現相鄰兩數之比確實是非常接近黃金分割比的。

一個很能說明問題的例子是五角星/正五邊形。五角星是非常美麗的,我們的國旗上就有五顆,還有不少國家的國旗也用五角星,這是為什麼?因為在五角星中可以找到的所有線段之間的長度關系都是符合黃金分割比的。正五邊形對角線連滿後出現的所有三角形,都是黃金分割三角形。

由於五角星的頂角是36度,這樣也可以得出黃金分割的數值為2Sin18 。
黃金分割點約等於0.618:1
是指分一線段為兩部分,使得原來線段的長跟較長的那部分的比為黃金分割的點。線段上有兩個這樣的點。

利用線段上的兩黃金分割點,可作出正五角星,正五邊形。
2000多年前,古希臘雅典學派的第三大算學家歐道克薩斯首先提出黃金分割。所謂黃金分割,指的是把長為L的線段分為兩部分,使其中一部分對於全部之比,等於另一部分對於該部分之比。而計算黃金分割最簡單的方法,是計算斐波契數列1,1,2,3,5,8,13,21,...後二數之比2/3,3/5,4/8,8/13,13/21,...近似值的。
黃金分割在文藝復興前後,經過阿拉伯人傳入歐洲,受到了歐洲人的歡迎,他們稱之為"金法",17世紀歐洲的一位數學家,甚至稱它為"各種演算法中最可寶貴的演算法"。這種演算法在印度稱之為"三率法"或"三數法則",也就是我們現在常說的比例方法。

其實有關"黃金分割",我國也有記載。雖然沒有古希臘的早,但它是我國古代數學家獨立創造的,後來傳入了印度。經考證。歐洲的比例演算法是源於我國而經過印度由阿拉伯傳入歐洲的,而不是直接從古希臘傳入的。
因為它在造型藝術中具有美學價值,在工藝美術和日用品的長寬設計中,採用這一比值能夠引起人們的美感,在實際生活中的應用也非常廣泛,建築物中某些線段的比就科學採用了黃金分割,舞台上的報幕員並不是站在舞台的正中央,而是偏在台上一側,以站在舞台長度的黃金分割點的位置最美觀,聲音傳播的最好。就連植物界也有採用黃金分割的地方,如果從一棵嫩枝的頂端向下看,就會看到葉子是按照黃金分割的規律排列著的。在很多科學實驗中,選取方案常用一種0.618法,即優選法,它可以使我們合理地安排較少的試驗次數找到合理的西方和合適的工藝條件。正因為它在建築、文藝、工農業生產和科學實驗中有著廣泛而重要的應用,所以人們才珍貴地稱它為"黃金分割"。
黃金分割〔Golden Section〕是一種數學上的比例關系。黃金分割具有嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。應用時一般取1.618 ,就像圓周率在應用時取3.14一樣。

發現歷史
由於公元前6世紀古希臘的畢達哥拉斯學派研究過正五邊形和正十邊形的作圖,因此現代數學家們推斷當時畢達哥拉斯學派已經觸及甚至掌握了黃金分割。

公元前4世紀,古希臘數學家歐多克索斯第一個系統研究了這一問題,並建立起比例理論。

公元前300年前後歐幾里得撰寫《幾何原本》時吸收了歐多克索斯的研究成果,進一步系統論述了黃金分割,成為最早的有關黃金分割的論著。

中世紀後,黃金分割被披上神秘的外衣,義大利數家帕喬利稱中末比為神聖比例,並專門為此著書立說。德國天文學家開普勒稱黃金分割為神聖分割。

到19世紀黃金分割這一名稱才逐漸通行。黃金分割數有許多有趣的性質,人類對它的實際應用也很廣泛。最著名的例子是優選學中的黃金分割法或0.618法,是由美國數學家基弗於1953年首先提出的,70年代在中國推廣。

|..........a...........|

+-------------+--------+ -
| | | .
| | | .
| B | A | b
| | | .
| | | .
| | | .
+-------------+--------+ -

|......b......|..a-b...|
通常用希臘字母 表示這個值。

黃金分割奇妙之處,在於其比例與其倒數是一樣的。例如:1.618的倒數是0.618,而1.618:1與1:0.618是一樣的。
確切值為根號5+1/2
黃金分割數是無理數,前面的1024位為:

1.6180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922...

D. 黃金分割的比值是多少

黃金分割又稱來黃金律,是指各事物自各部一定的數學比例,就是將一個整體一分為二,這兩部分較大部分與較小部分之比等於整體與較大部分之比,其比值為1∶0.618或1.618∶1,即長段為全段的0.618。0.618被公認為最具有審美意義的比例數字,這個比例最能引起人的美感比例,因此稱之為黃金分割。

黃金分割其比值是5/2-1/2或二分之根號五減一,取其前三位數字的近似值是0.618。另一側則是3-5/2。這是一個十分有趣的數字,我們以0.618來近似,通過簡單的計算就可以發現:1/0.618=1.618

(1-0.618)/0.618=0.618

這個數值是標準的黃金分割,這個數值用之廣泛,它不僅是體現在繪畫、雕塑、音樂、建築等藝術領域,還體現於管理、工程設計等方面。

E. 黃金分割比例是多少

在分割時.在長度為全長的約0.618處進行分割.就叫作黃金分割.這個分割點就叫做黃金版分割點(通常用權φ表示)把一條線段分割為兩部分,使其中一部分與全長之比等於另一部分與這部分之比。其比值是一個無理數,用分數表示為(√5-1)/2,取其前三位數字的近似值是0.618。由於按此比例設計的造型十分美麗,因此稱為黃金分割,也稱為中外比。這是一個十分有趣的數字,我們以0.618來近似表示,通過簡單的計算就可以發現:
(1-0.618)/0.618=0.618

F. 黃金分割比例是多少

經過計算得出結淪:長段(假設為a)與短段(假設為b)之比為1:o.618,其比值為L
618.可內用公式
a
:b=(a+b):a
表達,並存容在著的數學關系.此時,長段長度的平方又恰等於整個木棒與短段長度的乘積,即a=(a+b)b
這一神奇的比例關系,後來被古希臘著名哲學家、美學家柏拉圖譽為「黃金分割律」,簡稱「黃金律」、「黃金比」.這里用「黃金」兩字來形容這個規律的重要性,可謂是恰如其分.更奇妙的是,1除以1.618恰等於o.618,而其他數字均無此特徵.例如:I除以1.718不等手o,718;1除以1.518不等於O,518……1與o.618之差的O.382,其與o.618之比也
等於o.618(精確到o.001)。因此,說黃金分割的比值是1.618(長段:短段)或是o.618(短段:長段),都是正確的.數學家們還發現2:3或3:5或5:8等都是黃金比的近似值,並以分子分母之和為新的分母(原分母為分子)而遞增,即3/5.5/8.8/13,,13/21,21/34.34/55、55/88……數字越大,其分子分母的比值就越接近O.618,數學上將此稱為「弗波納齊數列」。

G. 黃金分割的比例是多少

黃金分割律
這是公元前六世紀古希臘數學家畢達哥拉斯所發現,後來古希臘美學家柏拉圖將此稱為黃金分割。這其實是一個數字的比例關系,即把一條線分為兩部分,此時長段與短段之比恰恰等於整條線與長段之比,其數值比為1.618
:
1或1
:
0.618,也就是說長段的平方等於全長與短段的乘積。0.618,以嚴格的比例性、藝術性、和諧性,蘊藏著豐富的美學價值。
為什麼人們對這樣的比例,會本能地感到美的存在?其實這與人類的演化和人體正常發育密切相關。據研究,從猿到人的進化過程中,骨骼方面以頭骨和腿骨變化最大,軀體外形由於近似黃金而矩形變化最小,人體結構中有許多比例關系接近0.618,從而使人體美在幾十萬年的歷史積淀中固定下來。人類最熟悉自己,勢必將人體美作為最高的審美標准,由物及人,由人及物,推而廣之,凡是與人體相似的物體就喜歡它,就覺得美。於是黃金分割律作為一種重要形式美法則,成為世代相傳的審美經典規律,至今不衰!
近年來,在研究黃金分割與人體關系時,發現了人體結構中有14個「黃金點」(物體短段與長段之比值為
0.618),12個「黃金矩形」(寬與長比值為
0.618的長方形)和2個「黃金指數」(兩物體間的比例關系為
0.618)
人體14個「黃金點」:
肚臍:頭頂-足底之分割點;
咽喉:頭頂-肚臍之分割點;
(3)、(4)膝關節:肚臍-足底之分割點;
(5)、(6)肘關節:肩關節-中指尖之分割點;
(7)、(8)乳頭:軀干乳頭縱軸上這分割點;
(9)眉間點:發際-頦底間距上1/3與中下2/3之分割點;
(10)鼻下點:發際-頦底間距下1/3與上中2/3之分割點;
(11)唇珠點:鼻底-頦底間距上1/3與中下2/3之分割點;
(12)頦唇溝正路點:鼻底-頦底間距下1/3與上中2/3之分割點;
(13)左口角點:口裂水平線左1/3與右2/3之分割點;
(14)右口角點:口裂水平線右1/3與左2/3之分割點。